Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2951, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580660

ABSTRACT

Hepatitis B virus is a globally distributed pathogen and the history of HBV infection in humans predates 10000 years. However, long-term evolutionary history of HBV in Eastern Eurasia remains elusive. We present 34 ancient HBV genomes dating between approximately 5000 to 400 years ago sourced from 17 sites across Eastern Eurasia. Ten sequences have full coverage, and only two sequences have less than 50% coverage. Our results suggest a potential origin of genotypes B and D in Eastern Asia. We observed a higher level of HBV diversity within Eastern Eurasia compared to Western Eurasia between 5000 and 3000 years ago, characterized by the presence of five different genotypes (A, B, C, D, WENBA), underscoring the significance of human migrations and interactions in the spread of HBV. Our results suggest the possibility of a transition from non-recombinant subgenotypes (B1, B5) to recombinant subgenotypes (B2 - B4). This suggests a shift in epidemiological dynamics within Eastern Eurasia over time. Here, our study elucidates the regional origins of prevalent genotypes and shifts in viral subgenotypes over centuries.


Subject(s)
Hepatitis B virus , Human Migration , Humans , Hepatitis B virus/genetics , Phylogeny , Genotype , Biological Evolution , DNA, Viral/genetics
2.
PLoS One ; 18(7): e0288128, 2023.
Article in English | MEDLINE | ID: mdl-37494335

ABSTRACT

Multidisciplinary research on human remains can provide important information about population dynamics, culture diffusion, as well as social organization and customs in history. In this study, multidisciplinary analyses were undertaken on a joint burial (M56) in the Shuangzhao cemetery of the Tang Dynasty (618-907 AD), one of the most prosperous dynasties in Chinese history, to shed light on the genetic profile and sociocultural aspects of this dynasty. The archaeological investigation suggested that this burial belonged to the Mid-Tang period and was used by common civilians. The osteological analysis identified the sex, age, and health status of the three individuals excavated from M56, who shared a similar diet inferred from the stable isotopic data. Genomic evidence revealed that these co-buried individuals had no genetic kinship but all belonged to the gene pool of the ancient populations in the Central Plains, represented by Yangshao and Longshan individuals, etc. Multiple lines of evidence, including archaeology, historic records, as well as chemical and genetic analyses, have indicated a very probable familial joint burial of husband and wives. Our study provides insights into the burial customs and social organization of the Tang Dynasty and reconstructs a scenario of civilian life in historic China.


Subject(s)
Burial , Cemeteries , Humans , History, Medieval , Burial/history , Cemeteries/history , Isotopes , Culture , Archaeology
3.
Int J Legal Med ; 137(2): 319-327, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625884

ABSTRACT

Bones are one of the most common biological types of evidence in forensic cases. Discriminating human bones from irrelevant species is important for the identification of victims; however, the highly degraded bones could be undiagnostic morphologically and difficult to analyze with standard DNA profiling approaches. The same challenge also exists in archaeological studies. Here, we present an initial study of an analytical strategy that involves zooarchaeology by mass spectrometry (ZooMS) and ancient DNA methods. Through the combined strategy, we managed to identify the only biological evidence of a two-decades-old murder case - a small piece of human bone out of 19 bone fragments - and confirmed the kinship between the victim and the putative parents through joint application of next-generation sequencing (NGS) and Sanger sequencing methods. ZooMS effectively screened out the target human bone while ancient DNA methods improve the DNA yields. The combined strategy in this case outperforms the standard DNA profiling approach with shorter time, less cost, as well as higher reliability for the genetic identification results. HIGHLIGHTS: • The first application of zooarchaeology by mass spectrometry technique in the forensic case for screening out human bones from bone fragment mixtures. • Application of ancient DNA technique to recover the highly degraded DNA sequence from the challenging sample that failed standard DNA profiling approaches. • A fast, sensitive, and low-cost strategy that combines the strengths of protein analysis and DNA analysis for kinship identification in forensic research.


Subject(s)
DNA, Ancient , DNA , Humans , Reproducibility of Results , Mass Spectrometry , Bone and Bones , DNA Fingerprinting/methods
4.
iScience ; 24(11): 103352, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34805800

ABSTRACT

Anthropology began in the late nineteenth century with an emphasis on kinship as a key factor in human evolution. From the 1960s, archaeologists attempted increasingly sophisticated ways of reconstructing prehistoric kinship but ancient DNA analysis has transformed the field, making it possible, to directly examine kin relations from human skeletal remains. Here, we retrieved genomic data from four Late Neolithic individuals in central China associated with the Late Neolithic Longshan culture. We provide direct evidence of consanguineous mating in ancient China, revealing inbreeding among the Longshan populations. By combining ancient genomic data with anthropological and archaeological evidence, we further show that Longshan society household was built based on the extended beyond the nuclear family, coinciding with intensified social complexity during the Longshan period, perhaps showing the transformation of large communities through a new role of genetic kinship-based extended family units.

5.
Front Genet ; 12: 740167, 2021.
Article in English | MEDLINE | ID: mdl-34630530

ABSTRACT

The population prehistory of Xinjiang has been a hot topic among geneticists, linguists, and archaeologists. Current ancient DNA studies in Xinjiang exclusively suggest an admixture model for the populations in Xinjiang since the early Bronze Age. However, almost all of these studies focused on the northern and eastern parts of Xinjiang; the prehistoric demographic processes that occurred in western Xinjiang have been seldomly reported. By analyzing complete mitochondrial sequences from the Xiabandi (XBD) cemetery (3,500-3,300 BP), the up-to-date earliest cemetery excavated in western Xinjiang, we show that all the XBD mitochondrial sequences fall within two different West Eurasian mitochondrial DNA (mtDNA) pools, indicating that the migrants into western Xinjiang from west Eurasians were a consequence of the early expansion of the middle and late Bronze Age steppe pastoralists (Steppe_MLBA), admixed with the indigenous populations from Central Asia. Our study provides genetic links for an early existence of the Indo-Iranian language in southwestern Xinjiang and suggests that the existence of Andronovo culture in western Xinjiang involved not only the dispersal of ideas but also population movement.

6.
Nature ; 599(7884): 256-261, 2021 11.
Article in English | MEDLINE | ID: mdl-34707286

ABSTRACT

The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.


Subject(s)
Archaeology , Genome, Human/genetics , Genomics , Human Migration/history , Mummies/history , Phylogeny , Agriculture/history , Animals , Cattle , China , Cultural Characteristics , Dental Calculus/chemistry , Desert Climate , Diet/history , Europe , Female , Goats , Grassland , History, Ancient , Humans , Male , Milk Proteins/analysis , Phylogeography , Principal Component Analysis , Proteome/analysis , Proteomics , Sheep , Whole Genome Sequencing
7.
PLoS Pathog ; 17(9): e1009886, 2021 09.
Article in English | MEDLINE | ID: mdl-34547027

ABSTRACT

Salmonella enterica (S. enterica) has infected humans for a long time, but its evolutionary history and geographic spread across Eurasia is still poorly understood. Here, we screened for pathogen DNA in 14 ancient individuals from the Bronze Age Quanergou cemetery (XBQ), Xinjiang, China. In 6 individuals we detected S. enterica. We reconstructed S. enterica genomes from those individuals, which form a previously undetected phylogenetic branch basal to Paratyphi C, Typhisuis and Choleraesuis-the so-called Para C lineage. Based on pseudogene frequency, our analysis suggests that the ancient S. enterica strains were not host adapted. One genome, however, harbors the Salmonella pathogenicity island 7 (SPI-7), which is thought to be involved in (para)typhoid disease in humans. This offers first evidence that SPI-7 was acquired prior to the emergence of human-adapted Paratyphi C around 1,000 years ago. Altogether, our results show that Salmonella enterica infected humans in Eastern Eurasia at least 3,000 years ago, and provide the first ancient DNA evidence for the spread of a pathogen along the Proto-Silk Road.


Subject(s)
Salmonella Infections/genetics , Salmonella Infections/history , Salmonella Infections/transmission , Salmonella enterica/genetics , China , DNA, Ancient , Evolution, Molecular , History, Ancient , Humans , Phylogeny , Virulence Factors/genetics
9.
Nat Commun ; 11(1): 2700, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483115

ABSTRACT

Northern China harbored the world's earliest complex societies based on millet farming, in two major centers in the Yellow (YR) and West Liao (WLR) River basins. Until now, their genetic histories have remained largely unknown. Here we present 55 ancient genomes dating to 7500-1700 BP from the YR, WLR, and Amur River (AR) regions. Contrary to the genetic stability in the AR, the YR and WLR genetic profiles substantially changed over time. The YR populations show a monotonic increase over time in their genetic affinity with present-day southern Chinese and Southeast Asians. In the WLR, intensification of farming in the Late Neolithic is correlated with increased YR affinity while the inclusion of a pastoral economy in the Bronze Age was correlated with increased AR affinity. Our results suggest a link between changes in subsistence strategy and human migration, and fuel the debate about archaeolinguistic signatures of past human migration.


Subject(s)
Agriculture/methods , Crops, Agricultural/growth & development , Edible Grain/growth & development , Genome, Human , Human Migration , Archaeology/methods , Asian People/genetics , Asian People/statistics & numerical data , China , DNA, Ancient/analysis , Genetics, Population/methods , Geography , Humans , Population Dynamics , Rivers , Sequence Analysis, DNA/methods , Time Factors
10.
Curr Biol ; 29(15): 2526-2532.e4, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31353181

ABSTRACT

Recent studies of early Bronze Age human genomes revealed a massive population expansion by individuals-related to the Yamnaya culture, from the Pontic Caspian steppe into Western and Eastern Eurasia, likely accompanied by the spread of Indo-European languages [1-5]. The south eastern extent of this migration is currently not known. Modern-day human populations from the Xinjiang region in northwestern China show a complex population history, with genetic links to both Eastern and Western Eurasia [6-10]. However, due to the lack of ancient genomic data, it remains unclear which source populations contributed to the Xinjiang population and what was the timing and the number of admixture events. Here, we report the first genome-wide data of 10 ancient individuals from northeastern Xinjiang. They are dated to around 2,200 years ago and were found at the Iron Age Shirenzigou site. We find them to be already genetically admixed between Eastern and Western Eurasians. We also find that the majority of the East Eurasian ancestry in the Shirenzigou individuals is-related to northeastern Asian populations, while the West Eurasian ancestry is best presented by ∼20% to 80% Yamnaya-like ancestry. Our data thus suggest a Western Eurasian steppe origin for at least part of the ancient Xinjiang population. Our findings furthermore support a Yamnaya-related origin for the now extinct Tocharian languages in the Tarim Basin, in southern Xinjiang.


Subject(s)
DNA, Ancient/analysis , Genome, Human , Human Migration/history , Archaeology , Asian People/genetics , China , History, Ancient , Humans , Language , White People/genetics
11.
Hum Biol ; 91(1): 21-30, 2019 02 17.
Article in English | MEDLINE | ID: mdl-32073242

ABSTRACT

Ancient DNA studies have always refreshed our understanding of the human past that cannot be tracked by modern DNA alone. Until recently, ancient mitochondrial genomic studies in East Asia were still very limited. Here, we retrieved the whole mitochondrial genome of an 8,400-year-old individual from Inner Mongolia, China. Phylogenetic analyses show that the individual belongs to a previously undescribed clade under haplogroup C5d that most probably originated in northern Asia and may have a very low frequency in extant populations that have not yet been sampled. We further characterized the demographic history of mitochondrial haplogroups C5 and C5d and found that C5 experienced a sharp increase in population size starting around 4,000 years before present, the time when intensive millet farming was developed by populations who are associated with the Lower Xiajiadian culture and was widely adopted in northern China. We caution that people related to haplogroup C5 may have added this farming technology to their original way of life and that the various forms of subsistence may have provided abundant food sources and further contributed to the increase in population size.


Subject(s)
Genome, Mitochondrial/genetics , Haplotypes/genetics , DNA, Ancient , DNA, Mitochondrial , Genotyping Techniques , History, Ancient , Humans , Mongolia/epidemiology , Phylogeny
12.
J Hum Genet ; 61(2): 103-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26511065

ABSTRACT

The complete mitochondrial genome of one 700-year-old individual found in Tashkurgan, Xinjiang was target enriched and sequenced in order to shed light on the population history of Tashkurgan and determine the phylogenetic relationship of haplogroup U5a. The ancient sample was assigned to a subclade of haplogroup U5a2a1, which is defined by two rare and stable transversions at 16114A and 13928C. Phylogenetic analysis shows a distribution pattern for U5a2a that is indicative of an origin in the Volga-Ural region and exhibits a clear eastward geographical expansion that correlates with the pastoral culture also entering the Eurasian steppe. The haplogroup U5a2a present in the ancient Tashkurgan individual reveals prehistoric migration in the East Pamir by pastoralists. This study shows that studying an ancient mitochondrial genome is a useful approach for studying the evolutionary process and population history of Eastern Pamir.


Subject(s)
Genome, Mitochondrial , Human Migration/history , China , DNA, Ancient/chemistry , History, Medieval , Humans , Phylogeny , Sequence Analysis, DNA
13.
Am J Phys Anthropol ; 157(1): 71-80, 2015 May.
Article in English | MEDLINE | ID: mdl-25546319

ABSTRACT

Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty-nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y-chromosomal DNA analyses combined with the archaeological studies revealed that the Di-qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age.


Subject(s)
Asian People/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Human Migration , Anthropology, Physical , China , Female , Humans , Male , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics
14.
Am J Phys Anthropol ; 144(2): 258-68, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20872743

ABSTRACT

Han Chinese is the largest ethnic group in the world. During its development, it gradually integrated with many neighboring populations. To uncover the origin of the Han Chinese, ancient DNA analysis was performed on the remains of 46 humans (1700 to 1900 years ago) excavated from the Taojiazhai site in Qinghai province, northwest of China, where the Di-Qiang populations had previously lived. In this study, eight mtDNA haplogroups (A, B, D, F, M*, M10, N9a, and Z) and one Y-chromosome haplogroup (O3) were identified. All analyses show that the Taojiazhai population presents close genetic affinity to Tibeto-Burman populations (descendants of Di-Qiang populations) and Han Chinese, suggesting that the Di-Qiang populations may have contributed to the Han Chinese genetic pool.


Subject(s)
Asian People/genetics , DNA, Mitochondrial/genetics , Fossils , Analysis of Variance , Base Sequence , Bone and Bones/chemistry , China , Chromosomes, Human, Y , Cluster Analysis , DNA, Mitochondrial/isolation & purification , Female , Gene Pool , Humans , Male , Molecular Sequence Data , Polymorphism, Single Nucleotide , Principal Component Analysis , Tooth/chemistry
15.
Am J Phys Anthropol ; 142(4): 558-64, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20091803

ABSTRACT

The mitochondrial DNA (mtDNA) polymorphisms of 58 samples from the Daheyan village located in the central Taklamakan Desert of the Tarim Basin were determined in this study. Among the 58 samples, 29 haplotypes belonging to 18 different haplogroups were analyzed. Almost all the mtDNAs belong to a subset of either the defined Western or Eastern Eurasian pool. Extensive Eastern Eurasian lineages exist in the Daheyan population in which Northern-prevalent haplogroups present higher frequencies. In the limited existing Western Eurasian lineages, two sub-haplogroups, U3 and X2, that are rare in Central Asia were found in this study, which may be indicative of the remnants of an early immigrant population from the Near East and Caucasus regions preserved only in the Tarim Basin. The presence of U3 in modern and archeological samples in the Tarim Basin suggests that the immigration took place earlier than 2,000 years ago and points to human continuity in this area, with at least one Western lineage originating from the Near East and Caucasus regions.


Subject(s)
Asian People/genetics , DNA, Mitochondrial/chemistry , Haplotypes/genetics , Polymorphism, Genetic/genetics , White People/genetics , China , Cluster Analysis , DNA, Mitochondrial/blood , Emigration and Immigration , Humans , Polymerase Chain Reaction
16.
Sci China C Life Sci ; 51(3): 205-13, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18246308

ABSTRACT

The Yuansha site is located in the center of the Taklimakan Desert of Xinjiang, in the southern Silk Road region. MtDNA was extracted from fifteen human remains excavated from the Yuansha site, dating back 2,000-2,500 years. Analysis of the phylogenetic tree and the multidimensional scaling (MDS) reveals that the Yuansha population has relatively close relationships with the modern populations of South Central Asia and Indus Valley, as well as with the ancient population of Chawuhu.


Subject(s)
DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Burial , China , Databases, Nucleic Acid , Haplotypes/genetics , Humans , Phylogeny , Polymorphism, Genetic/genetics , Sequence Analysis, DNA
17.
Am J Phys Anthropol ; 133(4): 1128-36, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17506489

ABSTRACT

Ancient DNA analysis was conducted on the dental remains of specimens from the Lajia site, dating back 3,800-4,000 years. The Lajia site is located in Minhe county, Qinghai province, in northwestern China. Archaeological studies link Lajia to the late period of the Qijia culture, one of the most important Neolithic civilizations of the upper Yellow River region, the cradle of Chinese civilization. Excavations at the site revealed that the inhabitants died in their houses as the result of a sudden flood. The Lajia site provides a rare chance to study the putative families, all of whom died at the same instant. Possible maternal familial relationships were investigated through mitochondrial DNA (mtDNA) sequence analysis. Twelve sequences from individuals found in one house were assigned to only five haplotypes, consistent with a possible close kinship. Results from analyses of RFLP typing and HVI motifs suggest that the Lajia people belonged to the haplogroups B, C, D, M*, and M10. This study, combined with archaeological and anthropological investigations, provides a better understanding of the genetic history of the Chinese people.


Subject(s)
Asian People/history , DNA, Mitochondrial/chemistry , Asian People/genetics , China , DNA, Mitochondrial/classification , Female , Haplotypes , History, Ancient , Humans , Male , Phylogeny , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...