Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(25): 30302-30311, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37337474

ABSTRACT

Silicon suboxide (SiOx) anodes have attracted considerable attention owing to their excellent cycling performance and rate capability compared to silicon (Si) anodes. However, SiOx anodes suffer from high volume expansion similar to Si anodes, which has been a challenge in developing suitable commercial binders. In this study, a water-soluble polyamide acid (WS-PAA) binder with ionic bonds was synthesized. The amide bonds inherent in the WS-PAA binder form a stable hydrogen bond with the SiOx anode and provide sufficient mechanical strength for the prepared electrodes. In addition, the ionic bonds introduced by triethylamine (TEA) induce water solubility and new Li+ transport channels to the binder, achieving enhanced electrochemical properties for the resulting SiOx electrodes, such as cycling and rate capability. The SiOx anode with the WS-PAA binder exhibited a high initial capacity of 1004.7 mAh·g-1 at a current density of 0.8 A·g-1 and a capacity retention of 84.9% after 200 cycles. Therefore, WS-PAA is a promising binder for SiOx anodes compared with CMC and SA.

2.
Hum Vaccin Immunother ; 18(5): 2050106, 2022 11 30.
Article in English | MEDLINE | ID: mdl-35394898

ABSTRACT

The presence of maternal poliovirus antibodies may interfere with the immune response to inactivated polio vaccine (IPV), and its influence on the safety of vaccination is not yet understood. A total of 1146 eligible infants were randomly assigned (1:1) to the IPV and Sabin IPV (SIPV) groups to compare and analyze the efficacy of the two vaccines in preventing poliovirus infection. We pooled the SIPV and IPV groups and reclassified them into the maternal poliovirus antibody-positive group (MAPG; ≥1: 8) and the maternal poliovirus antibody-negative group (MANG; <1: 8). We evaluated the impact of maternal poliovirus antibodies by comparing the geometric mean titer (GMT), seroconversion rate, and geometric mean increase (GMI) of types I-III poliovirus neutralizing antibodies post-vaccination, and incidence rates of adverse reactions following vaccination between the MAPG and MANG. Respective seroconversion rates in the MAPG and MANG were 94% and 100%, 79.27% and 100%, and 93.26% and 100% (all serotypes, P < .01) for types I-III poliovirus, respectively. The GMT of all types of poliovirus antibodies in the MAPG (1319.13, 219.91, 764.11, respectively) were significantly lower than those in the MANG (1584.92, 286.73, 899.59, respectively) (P < .05). The GMI in the MAPG was significantly lower than that in the MANG (P < .05). No statistically significant difference in the incidence of local and systemic adverse reactions was observed between the MAPG and MANG. Thus, the presence of maternal poliovirus antibodies does not affect the safety of IPV but can negatively impact the immune responses in infants after IPV vaccination.


Subject(s)
Antibodies, Viral , Poliovirus Vaccine, Inactivated , Antibodies, Neutralizing , Female , Humans , Immunization Schedule , Immunogenicity, Vaccine , Infant , Poliomyelitis/prevention & control , Poliovirus/immunology , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Inactivated/immunology
3.
ACS Appl Mater Interfaces ; 13(29): 34274-34281, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34255493

ABSTRACT

All-solid-state polymer electrolytes can improve the safety of lithium batteries. However, the common Bellcore polymer electrolyte technology faces several issues such as wasting a mass of solvent, high manufacturing cost, and poor interfacial compatibility between polymer electrolytes and electrodes. Herein, we propose an in situ polymerization technique to synthesize all-solid-state polymer electrolytes by a thiol-Michael addition click reaction. The alternating copolymer is made from the Michael addition reaction of ethylene glycol dimethacrylate (EGDMA) and 1,2-ethane dithiol (EDT). At ambient temperature, the obtained composite polymer electrolyte displays an ionic conductivity of 3.02 × 10-5 S/cm, an electrochemical window of 4.5 V, and a lithium-ion transference number of 0.45. In light of this unique polymerization process, the traditional fabrication method of liquid electrolyte-based lithium batteries can be adopted in the current study for the preparation of all-solid-state Li/LiFePO4 batteries. It was found that the assembled all-solid-state Li/LiFePO4 batteries exhibited superior charging/discharging performance and preferable safety. Thus, this facile and powerful in situ polymerization strategy may open up a new approach for the design and fabrication of all-solid-state batteries with desirable performances.

4.
Chem Asian J ; 14(9): 1404-1408, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30844121

ABSTRACT

Artificial intelligence sensations have aroused scientific interest from electronic conductors to bio-inspired ionic conductors. The conductivity of electrons decreases with increasing temperature, while the ionic conductivity agrees with an Arrhenius equation or a modified Vogel-Tammann-Fulcher (VTF) equation. Herein, thermo-responsive poly(N-isopropyl amide) (PNIPAm) and single-ion-conducting poly(2-acrylamido-2-methyl-1-propanesulfonic lithium salt) (PAMPSLi) were copolymerized via a facile radical polymerization to demonstrate a very intriguing anti-Arrhenius ionic conductivity behaviour during thermally induced volume-phase transition. These smart hydrogels presented very promising scaffolds for architecting flexible, wearable or advanced functional ionic devices.

5.
ACS Appl Mater Interfaces ; 10(18): 15691-15696, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29667402

ABSTRACT

It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li1.3Al0.3Ti1.7(PO4)3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.

6.
RSC Adv ; 8(34): 19034-19040, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539682

ABSTRACT

A facile approach to synthesize a polyimide (PI) film with enhanced dimensional stability, a high mechanical property and optical transparency is presented by embedding the partial imidized PI/SiC nanofiber-net in a poly(amic acid) (PAA) solution, followed by removing the solvent and imidization of the PAA. The nanofiber-network self-filled PI film demonstrates a much lower thermal expansion coefficient (CTE), an excellent mechanical property and high transparency retention in comparison to the film fabricated by solution cast. When the SiC content is 6 wt% in PI/SiC nanofibers, the CTE values for the PI film containing 25 wt% PI/SiC nanofibers are 2.80 times lower than the solution cast PI/SiC film. The tensile strength and modulus for the PI/SiC fiber filled film are also improved by 159% and 91% respectively in comparison to the solution cast SiC/PI film. In addition, the PI/SiC nanofiber-network filled PI film exhibits a high optic transparency. The significant improvement in aforementioned properties is contributed to by the long and continuous nanonetwork which acts as a frame to maintain the stable dimension and endow the film with high mechanical properties. Moreover, the nanosized SiC particles were constricted within the nano-fiber to avoid light scattering, so the high transparency of the film was retained.

SELECTION OF CITATIONS
SEARCH DETAIL
...