Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2404334, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864215

ABSTRACT

Pb-related imperfections (surface or halide vacancy induced uncoordinated Pb2+, Pb-I antisite, and Pb2+ vacancy defects) of the ionic crystal perovskite film seriously restrict the photovoltaic performance of perovskite solar cells (PSCs). Here, an aniline derivative N-(4-cyanophenyl)acetamide (CAL) is rationally designed, incorporating bilateral functional sites of cyano and acetyl groups, acting as Lewis base molecule for managing the Pb-related imperfections in perovskite surface through post-treatment. Theoretical calculation and experimental verification together proved the reduced defect density, improved crystallinity, and inhibited ion migration in the CAL-modified perovskite. Precisely, cyano as a side group and acetyl as another side group can both coordinate with Pb2+ for its low electrostatic potential energy. Further, the aniline core and the π-π conjugate structure in the benzene ring of the ligand tend to form a dimer to improve the mobility for carrier transportation and collection. The strategy demonstrates a champion PCE of 24.35% for the air-processed PSCs with over 1200 hours of maximum power point tracking (MPPT) stability. This study presents a comprehensive approach to overcoming the current Pb-related imperfections induced limitations in PSCs, paving the way for their integration into mainstream solar technologies.

2.
Small ; 20(26): e2311377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38299746

ABSTRACT

Developing inventive approaches to control crystallization and suppress trap defects in perovskite films is crucial for achieving efficient perovskite photovoltaics. Here, a synchronous regulation strategy is developed that involves the infusion of a zwitterionic ionic liquid additive, pyrrolidinium thiocyanate (PySCN), into the perovskite precursor to optimize the subsequent crystallization and defects. PySCN modification not only orchestrates the crystallization process but also deftly addresses trap defects in perovskite films. Within this, SCN- compensates for positively charged defects, while Py+ plays the role of passivating negatively charged defects. Based on the vacuum flash evaporation without anti-solvent, the air-processed perovskite solar cells (PSCs) with PySCN modification can achieve an extraordinary champion efficiency of 22.46% (0.1 cm2) and 21.15% (1.0 cm2) with exceptional stability surpassing 1200 h. Further, the self-powered photodetector goes above and beyond, showcasing an ultra-low dark current of 2.13 × 10-10 A·cm-2, a specific detection rate of 6.12 × 1013 Jones, and an expansive linear dynamic range reaching an astonishing 122.49 dB. PySCN modification not only signifies high efficiency but also ushers in a new era for crystallization regulation, promising a transformative impact on the optoelectronic performance of perovskite-based devices.

3.
Nano Lett ; 23(23): 11184-11192, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38029280

ABSTRACT

Facing the defects and energy barrier at the interface of perovskite solar cells, we propose a chiral molecule engineering strategy to simultaneously heal interfacial defects and regulate interfacial energy band alignment. S-ibuprofen (S-IBU), R-ibuprofen (R-IBU), and racemic ibuprofen (rac-IBU) are used to post-treat perovskite films. rac-IBU molecules possess the strongest anchoring on the surface of perovskites among all chiral molecules, translating into the best defect passivation effect. The hydrophobic isobutyl group and benzene ring could increase the film moisture resistance ability. Due to reduced interfacial defects and interfacial energy barrier, rac-IBU enables efficient devices with a maximum efficiency exceeding 24% based on vacuum flash technology without antisolvents. The encapsulated rac-IBU-modified device could maintain 90% of its initial performance after 1040 h of continuous maximum power point tracking. This work provides a feasible route to minimize interfacial nonradiative recombination losses by controlling spatial conformation via rational chiral molecule engineering.

SELECTION OF CITATIONS
SEARCH DETAIL