Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702500

ABSTRACT

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.

2.
J Therm Biol ; 113: 103529, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055134

ABSTRACT

Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.


Subject(s)
Agmatine , Preoptic Area , Rats , Male , Animals , Preoptic Area/physiology , Agmatine/pharmacology , Body Temperature Regulation/physiology , Hypothalamus , Shivering
3.
Neuroendocrinology ; 112(4): 399-416, 2022.
Article in English | MEDLINE | ID: mdl-34348333

ABSTRACT

INTRODUCTION: The lateral parabrachial nucleus (LPBN) is considered to be a brain site of the pyrogenic action of prostaglandin (PG) E2 outside of the preoptic area. Yet, the role of the LPBN in fever following a systemic immune challenge remains poorly understood. METHODS: We examined the expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in the LPBN after the intraperitoneal injection of lipopolysaccharide (LPS). We investigated the effects of LPBN NS-398 (COX-2 inhibitor) on LPS-induced fever, the effects of direct LPBN PGE2 administration on the energy expenditure (EE), brown adipose tissue (BAT) thermogenesis, neck muscle electromyographic activity and tail temperature, and the effects of PGE2 on the spontaneous firing activity and thermosensitivity of in vitro LPBN neurons in a brain slice. RESULTS: The COX-2 and mPGES-1 enzymes were upregulated at both mRNA and protein levels. The microinjection of NS-398 in the LPBN attenuated the LPS-induced fever. Direct PGE2 administration in the LPBN resulted in a febrile response by a coordinated response of increased EE, BAT thermogenesis, shivering, and possibly decreased heat loss through the tail. The LPBN neurons showed a clear anatomical distinction in the firing rate response to PGE2, with the majority of PGE2-excited or -inhibited neurons being located in the external lateral or dorsal subnucleus of the LPBN, respectively. However, neither the firing rate nor the thermal coefficient response to PGE2 showed any difference between warm-sensitive, cold-sensitive, and temperature-insensitive neurons in the LPBN. CONCLUSIONS: PGE2 synthesized in the LPBN was at least partially involved in LPS-induced fever via its different modulations of the firing rate of neurons in different LPBN subnuclei.


Subject(s)
Dinoprostone , Parabrachial Nucleus , Animals , Body Temperature Regulation , Dinoprostone/metabolism , Dinoprostone/pharmacology , Lipopolysaccharides/toxicity , Parabrachial Nucleus/metabolism , Preoptic Area/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...