Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Neural Regen Res ; 20(5): 1455-1466, 2025 May 01.
Article in English | MEDLINE | ID: mdl-39075912

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202505000-00028/figure1/v/2024-07-28T173839Z/r/image-tiff Several studies have shown that activation of unfolded protein response and endoplasmic reticulum (ER) stress plays a crucial role in severe cerebral ischemia/reperfusion injury. Autophagy occurs within hours after cerebral ischemia, but the relationship between ER stress and autophagy remains unclear. In this study, we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury. We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP), increased neuronal apoptosis, and induced autophagy. Furthermore, inhibition of ER stress using inhibitors or by siRNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis, indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy. Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis, indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury. Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy, and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.

2.
BMC Cancer ; 24(1): 1040, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174921

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a malignant astrocytic tumor and its progression involves the regulation of vascular endothelial growth factor-A (VEGFA). However, the mechanism of VEGFA in regulating GBM progression remains unclear. METHODS: VEGFA mRNA expression was analyzed by quantitative real-time polymerase chain reaction. Protein expression of VEGFA, cluster of differentiation 9 (CD9), CD81, and transforming growth factor-ß1 (TGF-ß1) was detected by western blotting assay. Flow cytometry assay was conducted to assess cell proliferation, cell apoptosis and myeloid-derived suppressor cell (MDSC) differentiation. TUNEL cell apoptosis detection kit was utilized to analyze cell apoptosis of tumors. Angiogenic capacity was investigated by tube formation assay. Transwell assay was used to assess cell migration and invasion. The effect of VEGFA on tumor formation was determined by a xenograft mouse model assay. Immunohistochemistry assay was used to analyze positive expression rate of VEGFA in tumor tissues. TGF-ß1 level was detected by enzyme-linked immunosorbent assay. RESULTS: VEGFA expression was upregulated in GBM tissues, GBM cells, and exosomes from GBM patients and GBM cells. VEGFA silencing led to decreased cell proliferation, tube formation, migration and invasion and increased cell apoptosis. Moreover, VEGFA knockdown also delayed tumor formation. VEGFA promoted MDSC differentiation and TGF-ß1 secretion by MDSCs by being packaged into exosomes. In addition, TGF-ß1 knockdown displayed similar effects with VEGFA silencing on GBM cell phenotypes, and MDSCs attenuated VEGFA knockdown-induced effects by secreting TGF-ß1 in A172 and U251 cells. CONCLUSION: VEGFA contributed to tumor property of GBM cells by promoting MDSC differentiation and TGF-ß1 secretion by MDSCs, providing potential targets for GBM treatment.


Subject(s)
Apoptosis , Cell Differentiation , Cell Proliferation , Glioblastoma , Myeloid-Derived Suppressor Cells , Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Humans , Animals , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Mice , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Cell Line, Tumor , Cell Movement/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays , Female
3.
Se Pu ; 42(8): 766-772, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086245

ABSTRACT

Hydrogen sulfide (H2S) is a pervasive gaseous pollutant that emits the characteristic odor of rotten gas, even at low concentrations. It is generated during various industrial processes, including petroleum and natural gas refining, mining operations, wastewater treatment activities, and refuse disposal practices. According to statistics from the World Health Organization (WHO), over 70 occupations are exposed to H2S, rendering it a key monitoring factor in occupational disease detection. Although H2S has legitimate uses in the chemical, medical, and other fields, prolonged exposure to this gas can cause severe damage to the respiratory and central nervous systems, as well as other organs in the human body. Moreover, the substantial release of H2S into the environment can lead to significant pollution. This noxious substance has the potential to impair soil, water, and air quality, while disrupting the equilibrium of the surrounding ecosystems. Therefore, sulfide has become one of the most commonly measured substances for environmental monitoring worldwide. Achieving the stable enrichment and accurate detection of low-level H2S is of great significance. Common methods for detecting this gas include spectrophotometry, chemical analysis, gas chromatography, rapid field detection, and ion chromatography. Although these methods provide relatively reliable results, they suffer from limitations such as high detection cost, low recovery, lack of environmental friendliness, and imprecise quantification of low-concentration H2S. Furthermore, the sampling processes involved in these methods are complex and require specialized equipment and electrical devices. Additionally, approximately 20% of the sulfides in a sample are lost after 2 h in a conventional alkaline sodium hydroxide solution, causing difficulties in preservation and detection. In this study, an accurate, efficient, and cost-saving method based on ion chromatography-pulse amperometry was developed for H2S determination. A conventional IonPac AS7 (250 mm×4 mm) anion-exchange column was employed, and a new eluent based on sodium hydroxide and sodium oxalate was used to replace the original sodium hydroxide-sodium acetate eluent. The main factors influencing the separation and detection performance of the proposed method, including the pulse amperage detection potential parameters and integration time, as well as the type and content of additives in the stabilizing solution, were optimized. The results showed that the proposed method had a good linear relationship between 10 and 3000 µg/L, with correlation coefficients (r2) of up to 0.999. The limits of detection (S/N=3) and quantification (S/N=10) were 1.53 and 5.10 µg/L, respectively. The relative standard deviations (RSDs) of the peak area and retention time of sulfides were less than 0.2% (n=6). The new method exhibited excellent stability, with up to 90% reduction in reagent costs. Compared with conventional ion chromatography-pulse amperometry, this method is more suitable for detecting low concentrations of sulfides in actual samples. Sulfides in a 250 mmol/L sodium hydroxide-0.8% (mass fraction) ethylenediaminetetraacetic acid disodium salt solution were effectively maintained for over 10 h. The new stabilizer significantly improved the reliability of both large-scale and long-term detection. The recovery of the proposed method was investigated by combining the system with a badge-type passive sampler. This sampling method requires no power devices; it is inexpensive, simple to operate, and can realize long-term sampling without the need for skilled personnel. Moreover, it can overcome the influence of short-term changes in pollutant concentration. The sampling results have high reference value for large-scale intervention-less pollutant monitoring in ultraclean rooms, museum counters, and other places. The results demonstrated that the recovery of the proposed method was greater than 95% for the blank sample and 80% for the sample plus standard solution. Finally, the newly established method was applied to determine H2S levels in air samples collected via passive sampling at school garbage stations. The measured results did not exceed the national limit.


Subject(s)
Air Pollutants , Hydrogen Sulfide , Hydrogen Sulfide/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Chromatography, Ion Exchange/methods
4.
Se Pu ; 42(8): 799-804, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086249

ABSTRACT

Urea is a simple organic compound that is widely used in both the industry and daily life. Compared with conventional methods, the preparation of urea by electrochemical synthesis is more environmentally friendly and sustainable. However, after the reaction, low amounts of urea and high concentrations of inorganic ions, including [Formula: see text] concentration was achieved without interference. Thus, the developed method can be applied for the detection of trace urea and other related ions in urea-containing electrolyte products.

5.
Front Nutr ; 11: 1409025, 2024.
Article in English | MEDLINE | ID: mdl-39135553

ABSTRACT

Background: Outside of pregnancy, intuitive eating (IE) is associated with lower body weight, blood glucose, and higher positive mood. However, little was known about the relationship between IE and anxiety-depression in the GDM population. Thus, this study aimed to investigate the association of IE with anxiety and depression, pregnancy weight and pregnancy blood glucose in the first and second GDM visit. Methods: Data from 310 pregnant women with GDM from the Fujian Maternal and Child Health Hospital Trial (Approval Number: 2020Y9133) were analyzed. IE was assessed using the Intuitive Eating Scale-2 subscales of Eating for Physiological Reasons rather than Emotional Reasons (EPR), Relying on Hunger and Satiety Cues (RHSC) and Body-Food Choice Consistency (B-FCC). Observations included weight, body mass index (BMI), fasting plasma glucose (FPG) and 2-h postprandial blood glucose; the Hospital Anxiety and Depression Scale (HADS) was used to assess the level of anxiety and depression in pregnant women with GDM. Linear regression analysis was used to assess the correlation between IE and anxiety, depression, pregnancy blood glucose and weight. Results: The cross-sectional analysis showed that the EPR eating behavior was negatively correlated with anxiety and depression, and the B-FCC eating behavior was negatively correlated with depression at both the first and second GDM visit; in addition, the B-FCC eating behavior was associated with lower BMI in the third trimester (all p < 0.05). In longitudinal analyses, the EPR eating behavior in the first visit for GDM predicted lower levels of anxiety and depression in the second GDM visit, whereas the RHSC eating behavior in the first visit for GDM was associated with lower FPG in the second GDM visit (all p < 0.01). Conclusion: These results suggest that practicing intuitive eating may be beneficial and that higher intuitive eating adherence can lead to lower levels of anxiety and depression and more ideal gestational weight and blood glucose values.

6.
Int J Biol Macromol ; 278(Pt 1): 134620, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127274

ABSTRACT

Protein-based subunit vaccines are weakly immunogenic, and developing self-adjuvanting vaccines with adjuvant conjugated to antigen is a promising approach for generating optimal immune responses. Here, we report a novel adjuvant-protein conjugate vaccine based on versatile oxime ligation technique. Firstly, the adjuvant properties of a series of TLR7 and TLR7/8 small molecule agonists in self-adjuvanting vaccines were systematically compared by coupling them to proteins in consistent ratio via p-carboxybenzaldehyde (p-CBA) for the first time. All conjugate vaccines induced cytokine secretion in murine and human macrophages in vitro, and promoted specific antibody production in vivo. Notably, a conjugate containing imidazoquinoline TLR7/8 agonist (TLR7/8a1) showed the greatest enhancement in Th1/2 balanced antibody response. To minimize the interference with the protein antigenic integrity, we further developed a systematic glycoconjugation strategy to conjugate this TLR7/8a1 onto the glycan chains of SARS-CoV-2 S1 glycoprotein via oxime ligation, in which S1 containing different numbers of aldehyde groups were obtained by differential periodate oxidation. The resulting TLR7/8a1-S1 conjugate triggered a potent humoral and cellular immunity in vivo. Together these data demonstrate the promise of these TLR7 and TLR7/8 agonists as effective built-in adjuvants, and the versatile oxime ligation strategy might broaden potential applications in designing different conjugate vaccines.

7.
Acta Pharmacol Sin ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112770

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a major cytosolic DNA sensor that plays a significant role in innate immunity. Upon binding to double stranded DNA (dsDNA), cGAS utilizes GTP and ATP to synthesize the second messenger cyclic GMP-AMP (cGAMP). The cGAMP then binds to the adapter protein stimulator of interferon genes (STING) in the endoplasmic reticulum, resulting in the activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent induction of type I interferon. An important question is how cGAS distinguishes between self and non-self DNA. While cGAS binds to the phosphate backbone of DNA without discrimination, its activation is influenced by physical features such as DNA length, inter-DNA distance, and mechanical flexibility. This suggests that the recognition of DNA by cGAS may depend on these physical features. In this article we summarize the recent progress in research on cGAS-STING pathway involved in antiviral defense, cellular senescence and anti-tumor response, and focus on DNA recognition mechanisms based on the physical features.

8.
Food Chem ; 460(Pt 3): 140713, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39116775

ABSTRACT

Chitosan, as a kind of naturally occurring green and degradable material for the preservation of perishable foods, was investigated in this study with the objective of enhancing its preservation performances. Herein, lignin was modified using the solvent fractionation method (modified lignin, ML, including ML1-ML3), while natural clinoptilolite zeolite was modified using the alkali modification method (modified clinoptilolite zeolite, MCZ, including MCZ1-MCZ5). After optimizing the conditions, it was discovered that incorporating both ML3 and MCZ3 into pure chitosan-based membranes might be conducive to fabricate chitosan-based composite membranes for the preservation of perishable foods. As-prepared composite membranes possessed better visible light transmittance, antioxidant activity, and carbon dioxide/oxygen selectivity, resulting in improved preservation effects on the model perishable foods such as bananas, cherry tomatoes, and cheeses. These findings might indicate promising applications for chitosan-based composite membranes with modified lignin and zeolite in the field of eco-friendly degradable materials for the preservation of perishable foods.

9.
Acta Histochem ; 126(5-7): 152174, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38976933

ABSTRACT

Choroidal melanoma (CM), a highly metastatic eye tumor, exhibits vasculogenic mimicry (VM) facilitated by hypoxia-induced angiogenesis. This study explored the inhibitory impact of the anti-malarial drug Artesunate (ART) on CM VM through modulation of the HIF-1α/VEGF/PDGF pathway. Immunohistochemistry (IHC) confirmed VM in CM with elevated VEGF and PDGF expression. Hypoxia promoted CM proliferation, upregulating HIF-1α, VEGF and PDGF. VEGF and PDGF enhanced CM migration, invasion and VM, with HIF-1α playing a crucial role. ART mitigated VM formation by suppressing the HIF-1α/VEGF/PDGF pathway, highlighting its potential as an anti-tumor agent in CM.

10.
J Imaging Inform Med ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977614

ABSTRACT

This study is to analyze and compare the diagnostic efficacy of the ADNEX model and O-RADS in Northeast China for benign and malignant ovarian-adnexal tumors. From July 2020 to February 2022, ultrasound images of 312 ovarian-adnexal masses included in the study were analyzed retrospectively, and the properties of these masses were identified using the ADNEX model and O-RADS. The diagnostic efficiency of the ADNEX model and O-RADS was analyzed using a ROC curve, and the capacities of the two models in differentiating benign and malignant ovarian masses at the optimum cutoff value were compared, as well as the consistency of their diagnosis results was evaluated. The study included 312 ovarian-adnexal masses, including 145 malignant masses and 167 benign masses from 287 patients with an average age of (46.8 ± 11.3) years. The AUC of the ADNEX model was 0.974, and the optimum cutoff value was the risk value > 24.2%, with the corresponding sensitivity and specificity being 97.93 and 86.83, respectively. The AUC of the O-RADS was 0.956, and the optimum cutoff value was > O-RADS 3, with the corresponding sensitivity and specificity being 97.24 and 85.03, respectively. The AUCs of the two models were 0.924 and 0.911 at the optimum cutoff values, with no statistical differences between them (P = 0.284). Consistency analysis: the kappa values of the two models for the determination and pathological results of masses were 0.840 and 0.815, respectively, and that for the diagnostic outcomes was 0.910. Both the ADNEX model and O-RADS had good diagnostic performance in people from Northeast China. Their diagnostic capabilities were similar, and diagnostic results were highly consistent at the optimum cutoff values.

11.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001181

ABSTRACT

The switch machine, an essential element of railway infrastructure, is crucial in maintaining the safety of railway operations. Traditional methods for fault diagnosis are constrained by their dependence on extensive labeled datasets. Semi-supervised learning (SSL), although a promising solution to the scarcity of samples, faces challenges such as the imbalance of pseudo-labels and inadequate data representation. In response, this paper presents the Semi-Supervised Adaptive Matrix Machine (SAMM) model, designed for the fault diagnosis of switch machine. SAMM amalgamates semi-supervised learning with adaptive technologies, leveraging adaptive low-rank regularizer to discern the fundamental links between the rows and columns of matrix data and applying adaptive penalty items to correct imbalances across sample categories. This model methodically enlarges its labeled dataset using probabilistic outputs and semi-supervised, automatically adjusting parameters to accommodate diverse data distributions and structural nuances. The SAMM model's optimization process employs the alternating direction method of multipliers (ADMM) to identify solutions efficiently. Experimental evidence from a dataset containing current signals from switch machines indicates that SAMM outperforms existing baseline models, demonstrating its exceptional status diagnostic capabilities in situations where labeled samples are scarce. Consequently, SAMM offers an innovative and effective approach to semi-supervised classification tasks involving matrix data.

12.
CNS Neurosci Ther ; 30(7): e14835, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39004783

ABSTRACT

AIMS: Necroptosis is one of programmed death that may aggravate spinal cord injury (SCI). We aimed to investigate the effect and mechanism of exendin-4 (EX-4) on the recovery of motor function and necroptosis after SCI. METHODS: The SD rats with left hemisection in the T10 spinal cord as SCI model were used. The behavior tests were measured within 4 weeks. The effects of EX-4 on necroptosis-associated proteins and autophagy flux were explored. In addition, the SHSY5Y cell model was introduced to explore the direct effect of EX-4 on neurons. The effect of lysosome was explored using mTOR activator and AO staining. RESULTS: EX-4 could improve motor function and limb strength, promote the recovery of autophagy flux, and accelerate the degradation of necroptosis-related protein at 3 d after injury in rats. EX-4 reduced lysosome membrane permeability, promoted the recovery of lysosome function and autophagy flux, and accelerated the degradation of necroptosis-related proteins by inhibiting the phosphorylation level of mTOR in the SHSY5Y cell model. CONCLUSION: Our results demonstrated that EX-4 may improve motor function after SCI via inhibiting mTOR phosphorylation level and accelerating the degradation of necroptosis-related proteins in neurons. Our findings may provide new therapeutic targets for clinical treatment after SCI.


Subject(s)
Autophagy , Exenatide , Necroptosis , Neurons , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Autophagy/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Rats , Neurons/drug effects , Neurons/metabolism , Exenatide/pharmacology , Exenatide/therapeutic use , Necroptosis/drug effects , Humans , Recovery of Function/drug effects , Recovery of Function/physiology , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Neuroprotective Agents/pharmacology , Male
13.
J Obstet Gynaecol ; 44(1): 2378489, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39016329

ABSTRACT

BACKGROUND: This research investigates the metabolic profiles of follicular fluid (FF) samples from patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilisation and aims to identify diagnostic and therapeutic biomarkers for PCOS through lipidomic analysis. METHODS: We performed non-targeted lipid analysis of FF samples from women with PCOS (n = 6) and normal controls (n = 6) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Differential lipids between the two groups were screened using multidimensional statistical analysis, followed by fold change analysis and t-tests to identify potential PCOS biomarkers. RESULTS: Multivariate statistical analysis revealed significant differences in FF lipid levels between the PCOS and control groups. Five different lipids were selected as standards, with p < .05. Phosphatidylcholine (PC), the main differentially expressed lipid, was significantly increased in the FF of the POCS group and was closely related to other lipids. CONCLUSIONS: Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we investigated lipid biomarkers based on FF lipidomics to provide useful information for the discovery of diagnostic markers for PCOS. Our study identified five distinct lipids as potential markers of PCOS, with PC being the primary aberrant lipid found in the FF of patients with PCOS.


Follicular fluid (FF) is a complex microenvironment involved in oocyte growth, follicular maturation and germ cell­somatic cell communication. All metabolites during oocyte growth are collected from the FF. This study used lipidomic analysis to identify differences in FF lipids between normal women and those diagnosed with polycystic ovary syndrome (PCOS). The pathogenesis of PCOS is associated with abnormal metabolism of glyceroglycolipids and sphingomyelin. Here, we found that phosphatidylcholine is the main abnormal lipid in FF in patients with PCOS. Our study informs the future research into the development of diagnostic markers for PCOS to be used in clinical practice.


Subject(s)
Biomarkers , Follicular Fluid , Lipidomics , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Female , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Lipidomics/methods , Adult , Biomarkers/analysis , Biomarkers/metabolism , Lipids/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Case-Control Studies , Phosphatidylcholines/analysis , Phosphatidylcholines/metabolism , Fertilization in Vitro
14.
Phytomedicine ; 133: 155895, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39084184

ABSTRACT

BACKGROUND: Shizao decoction (SZD) consisted of Euphorbia kansui (EK), Euphorbia pekinensis (EP), Daphne genkwa (DG), and Fructus Jujubae (FJ) is a classic Chinese herbal medicine formula for treating malignant ascites, which is closely related to the modulation of gut microbiota by our previous study. For water-expelling members (WEM) including EK, EP, and DG may have side effects on the intestine, FJ is employed for detoxification and effectivity enhancement of WEM. However, the underlying mechanism for the compatibility of WEM and FJ is still unknown. PURPOSE: To investigate the effect of the compatibility of WEM with FJ in SZD on malignant ascites and elucidate the potential mechanism from the perspective of the modulation of gut microbiota and related metabolic function. METHODS: Qualitative and quantitative evaluation of main components was conducted for comprehensive characterization of SZD and WEM. The effect of WEM and SZD was compared on malignant ascites effusion (MAE) rats. The intestinal injury was evaluated by HE staining and oxidative damage. Ascites weight, urine amount, fecal water content, the expression of aquaporins, and cytokines in ascites (IL-6, VEGF, and TNF-α) were measured to estimate the water-expelling activity. The intestinal flora was detected by 16S rDNA sequencing and the content of fecal short-chain fatty acids (SCFAs) was analyzed using gas chromatography-mass spectrometry. Pseudo-germ-free (PGF) and fecal bacteria transplantation animal experiments were subsequently employed to validate this finding. The fecal metabolomics and correlation analysis were finally conducted to explore the related metabolic changes. RESULTS: 51 and 33 components were identified in SZD and WEM, respectively. Compared to WEM alone, the compatibility with FJ remarkably reduced intestinal oxidative damage in MAE rats. Ascites was also relieved by downregulating the expression of AQP3 in the colon and decreasing the levels of IL-6, TNF-α and VEGF in ascites. The diversity of gut microbiota was reversed with an increase in Lactobacillus and Clostridia_UCG-014 while a decrease in Colidextribacter. Under the PGF condition, compatibility of WEM with FJ failed to reduce intestinal injury and alleviate MA significantly, but this effect was further enhanced after FMT. 23 potential fecal metabolites were finally identified. Correlation analysis further showed that Lactobacillus and Clostridia_UCG-014 were positively correlated with SCFAs and l-tryptophan. Colidextribacter was negatively correlated with thymidine but positively correlated with ursodeoxycholic acid and deoxycholic acid. CONCLUSION: FJ cooperated with WEM reduced intestinal injury and alleviated malignant ascites by modulating gut microbiota, short-chain fatty and tryptophan metabolism. These findings provide a scientific basis for the clinical application of FJ from SZD and the safe usage of SZD.

15.
Respir Res ; 25(1): 263, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956592

ABSTRACT

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Subject(s)
Acute Lung Injury , Histone Deacetylases , Lipopolysaccharides , Lysine , Mice, Inbred C57BL , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Mice , Acetylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Lysine/metabolism , Mice, Knockout , Male , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Myeloid Cells/metabolism
16.
Heliyon ; 10(12): e32984, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994052

ABSTRACT

As a Japanese graphic symbol widely used in the world, Emoji plays an important role in computer mediated communication. Despite its prevalent use, the interaction dynamics between emoji and textual sentences remain inadequately explored. Based on the emotional function of emoji, this study uses the indirect priming method to explore the emotional impact of emoji on subsequent text in computer mediated communication through two progressive behavioral experiments. The results show that: (1) Emoji positioned at the onset of a sentence induce an emotional priming effect; (2) The processing speed is slowest when emoji and text are emotionally conflicting, while in non-conflicting condition, the type of emoji moderates the processing of combined sentences; (3) The emotional influence of emoji plays an auxiliary role, and the valence of textual sentence plays a decisive role in emotional perception.

17.
Chin J Integr Med ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073516

ABSTRACT

OBJECTIVE: To investigate changes of myeloid differentiation factor 2 (MD2) in inflammation-induced pain and acupuncture-mediated analgesia. METHODS: Mice were randomly divided into three groups by a random number table method: saline group (n=16), complete Freund's adjuvant (CFA) group (n=24) and CFA+electroacupuncture (EA) group (n=26). Inflammation-induced pain was modelled by injecting CFA to the plantar surface of the hind paw of mice and EA was applied to bilateral Zusanli (ST 36) to alleviate pain. Only mice in the CFA+EA group received EA treatment (30 min/d for 2 weeks) 24 h after modelling. Mice in the saline and CFA groups received sham EA. von-Frey test and Hargreaves test were used to assess the pain threshold. Brain and spinal tissues were collected for immunofluorescence staining or Western blotting to quantify changes of MD2 expression. RESULTS: CFA successfully induced plantar pain and EA significantly alleviated pain 3 days after modelling (P<0.01). Compared with the CFA group, the number of MD2+/c-fos+ neurons was significantly increased in the dorsal horn of the spinal cord 7 and 14 days after EA, especially in laminae I - IIo (P<0.01). The proportion of double positive cells to the number of c-fos positive cells and the mean fluorescence intensity of MD2 neurons were also significantly increased in laminae I - IIo (P<0.01). Western blotting showed that the level of MD2 was significantly decreased by EA only in the hippocampus on day 7 and 14 (both P<0.01) and no significant changes were observed in the cortex, thalamus, cerebellum, or the brainstem (P<0.05). Fluorescence staining showed significant decrease in the level of MD2 in periagueductal gray (PAG) and locus coeruleus (LC) after CFA injection on day 7 (P<0.01 for PAG, P<0.05 for LC) and EA significantly reversed this decrease (P<0.01 for PAG, P<0.05 for LC). CONCLUSION: The unique changes of MD2 suggest that EA may exert the analgesic effect through modulating neuronal activities of the superficial laminae of the spinal cord and certain regions of the brain.

18.
Science ; 385(6707): 409-416, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052814

ABSTRACT

Understanding the neural basis of infant social behaviors is crucial for elucidating the mechanisms of early social and emotional development. In this work, we report a specific population of somatostatin-expressing neurons in the zona incerta (ZISST) of preweaning mice that responds dynamically to social interactions, particularly those with their mother. Bidirectional neural activity manipulations in pups revealed that widespread connectivity of preweaning ZISST neurons to sensory, emotional, and cognitive brain centers mediates two key adaptive functions associated with maternal presence: the reduction of behavior distress and the facilitation of learning. These findings reveal a population of neurons in the infant mouse brain that coordinate the positive effects of the relationship with the mother on an infant's behavior and physiology.


Subject(s)
Neurons , Social Behavior , Social Interaction , Somatostatin , Zona Incerta , Animals , Female , Male , Mice , Emotions , Learning , Maternal Behavior , Neurons/metabolism , Neurons/physiology , Somatostatin/metabolism , Zona Incerta/metabolism , Zona Incerta/physiology
19.
Stem Cell Res Ther ; 15(1): 239, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080783

ABSTRACT

BACKGROUND: The leading cause of end-stage renal disease (ESRD) is diabetic nephropathy (DN). Podocyte damage is an early event in the development of DN. Currently, there is no effective treatment strategy that can slow the progression of DN or reverse its onset. The role of mesenchymal stem cells (MSCs) transplantation in diabetes and its complications has been extensively studied, and diabetic nephropathy has been a major focus. Irbesartan exerts reno-protective effects independent of lowering blood pressure, can reduce the incidence of proteinuria in rats, and is widely used clinically. However, it remains undetermined whether the combined utilization of the angiotensin II receptor antagonist irbesartan and MSCs could enhance efficacy in addressing DN. METHODS: A commonly used method for modeling type 2 diabetic nephropathy (T2DN) was established using a high-fat diet and a single low-dose injection of STZ (35 mg/kg). The animals were divided into the following 5 groups: (1) the control group (CON), (2) the diabetic nephropathy group (DN), (3) the mesenchymal stem cells treatment group (MSCs), (4) the irbesartan treatment group (Irb), and (5) the combined administration group (MSC + Irb). MSCs (2 × 106 cells/rat) were injected every 10 days through the tail vein for a total of three injections; irbesartan (30 mg/kg/d) was administered by gavage. Additionally, the safety and homing of mesenchymal stem cells were verified using positron emission tomography (PET) imaging. RESULTS: The combination treatment significantly reduced the UACR, kidney index, IGPTT, HOMA-IR, BUN, serum creatine, and related inflammatory factor levels and significantly improved renal function parameters and the expression of proteins related to glomerular podocyte injury in rats. Moreover, MSCs can homing target to damaged kidneys. CONCLUSIONS: Compared to the administration of MSCs or irbesartan alone, the combination of MSCs and irbesartan exerted better protective effects on glomerular podocyte injury, providing new ideas for the clinical application of mesenchymal stem cells.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Irbesartan , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Podocytes , Animals , Irbesartan/pharmacology , Irbesartan/therapeutic use , Podocytes/drug effects , Podocytes/pathology , Mesenchymal Stem Cell Transplantation/methods , Rats , Mesenchymal Stem Cells/metabolism , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/therapy , Diabetic Nephropathies/drug therapy , Male , Umbilical Cord/cytology , Rats, Sprague-Dawley , Humans , Transplantation, Heterologous , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use
20.
J Am Heart Assoc ; 13(14): e035337, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979802

ABSTRACT

BACKGROUND: Statins are widely used for treating patients with ischemic stroke at risk of secondary cerebrovascular events. It is unknown whether Asian populations benefit from more intensive statin-based therapy for stroke recurrence. Therefore, in the present study we evaluated the effectiveness and safety of high-dose and moderate-dose statins for patients who had experienced mild ischemic stroke during the acute period. METHODS AND RESULTS: This multicenter prospective study included patients with mild ischemic stroke who presented within 72 hours of symptom onset. The outcomes of patients in the high-intensity and moderate-intensity statin treatment groups were compared, with the main efficacy outcome being stroke recurrence and the primary safety end point being intracranial hemorrhage. The propensity score matching method was employed to control for imbalances in baseline variables. Subgroup analyses were conducted to evaluate group differences. In total, the data of 2950 patients were analyzed at 3 months, and the data of 2764 patients were analyzed at 12 months due to loss to follow-up. According to the multivariable Cox analyses adjusted for potential confounders, stroke recurrence occurred similarly in the high-intensity statin and moderate-intensity statin groups (3 months: adjusted hazard ratio [HR], 1.12 [95% CI, 0.85-1.49]; P=0.424; 12 months: adjusted HR, 1.08 [95% CI, 0.86-1.34]; P=0.519). High-intensity statin therapy was associated with an increased risk of intracranial hemorrhage (3 months: adjusted HR, 1.81 [95% CI, 1.00-3.25]; P=0.048; 12 months: adjusted HR, 1.86 [95% CI, 1.10-3.16]; P=0.021). The results from the propensity score-matched analyses were consistent with those from the Cox proportional hazards analysis. CONCLUSIONS: Compared with moderate-intensity statin therapy, high-dose statin therapy may not decrease the risk of mild, noncardiogenic ischemic stroke recurrence but may increase the risk of intracranial hemorrhage. REGISTRATION: URL: www.chictr.org.cn/. Unique Identifier: ChiCTR1900025214.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ischemic Stroke , Recurrence , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Female , Male , Prospective Studies , Ischemic Stroke/drug therapy , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnosis , Aged , Middle Aged , Treatment Outcome , Time Factors , Risk Factors , Propensity Score , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/epidemiology , Severity of Illness Index , Secondary Prevention/methods
SELECTION OF CITATIONS
SEARCH DETAIL