Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(13): 16474-16481, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502742

ABSTRACT

The development of lead halide perovskite X-ray detectors has promising applications in medical imaging and security inspection but is hindered by poor long-term stability and drift of the dark current and photocurrent. Herein, we design a (Cs0.05MA0.65FA0.3)PbI3-(Cs0.1MA1.3FA0.6)AgBiI6 double-layer perovskite film to assemble a self-powered flat-panel X-ray detector. The demonstrated X-ray detector achieves an outstanding self-powered sensitivity of 80 µC Gyair-1 cm-2 under a 0 V bias. More importantly, owing to the inhibition of the phase transition process and ion migration of (Cs0.05MA0.65FA0.3)PbI3 by the (Cs0.1MA1.3FA0.6)AgBiI6 layer, the device exhibits excellent continuous operating stability with a retention rate of 99% dark current and photocurrent over X-ray pulses of up to 4000 s and excellent long-term stability without a loss of the original response current after 150 days in an air environment. The strategy of double-layer perovskites improves the stability and sensitivity of devices, which paves a path for the industrial application of lead halide perovskite X-ray detectors.

2.
Plant Commun ; 5(6): 100849, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38384133

ABSTRACT

Brassinosteroids (BRs) are a class of phytohormones that regulate plant growth and development. In previous studies, we cloned and identified PROTEIN PHOSPHATASE WITH KELCH-LIKE1 (OsPPKL1) as the causal gene for the quantitative trait locus GRAIN LENGTH3 (qGL3) in rice (Oryza sativa). We also showed that qGL3/OsPPKL1 is mainly located in the cytoplasm and nucleus and negatively regulates BR signaling and grain length. Because qGL3 is a negative regulator of BR signaling, its turnover is critical for rapid response to changes in BRs. Here, we demonstrate that qGL3 interacts with the WD40-domain-containing protein WD40-REPEAT PROTEIN48 (OsWDR48), which contains a nuclear export signal (NES). The NES signal is crucial for the cytosolic localization of OsWDR48 and also functions in the self-turnover of qGL3. We show that OsWDR48 physically interacts with and genetically acts through qGL3 to modulate BR signaling. Moreover, qGL3 may indirectly promote the phosphorylation of OsWDR48 at the Ser-379 and Ser-386 sites. Substitutions of both phosphorylation sites in OsWDR48 to non-phosphorylatable alanine enhanced the strength of the OsWDR48-qGL3 interaction. Furthermore, we found that brassinolide can promote the accumulation of non-phosphorylated OsWDR48, leading to strong interaction intensity between qGL3 and OsWDR48. Taken together, our results show that OsWDR48 facilitates qGL3 retention and induces degradation of qGL3 in the cytoplasm. These findings suggest that qGL3 self-modulates its turnover by binding to OsWDR48 to regulate its cytoplasmic localization and stability, leading to efficient orchestration of BR signal transduction in rice.


Subject(s)
Brassinosteroids , Oryza , Plant Proteins , Signal Transduction , Oryza/genetics , Oryza/metabolism , Brassinosteroids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Gene Expression Regulation, Plant , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL