Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Article in English | MEDLINE | ID: mdl-38919051

ABSTRACT

The electrocatalytic conversion of formate in alkaline solutions is of paramount significance in the realm of fuel cell applications. Nonetheless, the adsorptive affinity of adsorbed hydrogen (Had) on the catalyst surface has traditionally impeded the catalytic efficiency of formate in such alkaline environments. To circumvent this challenge, our approach introduces an interfacial push-pull effect on the catalyst surface. This mechanism involves two primary actions: First, the anchoring of palladium (Pd) nanoparticles on a phosphorus-doped TiO2 substrate (Pd/TiO2-P) promotes the formation of electron-rich Pd with a downshifted d band center, thereby "pushing" the desorption of Had from the Pd active sites. Second, the TiO2-P support diminishes the energy barrier for Had transfer from the Pd sites to the support itself, "pulling" Had to effectively relocate from the Pd active sites to the support. The resultant Pd/TiO2-P catalyst showcases a remarkable mass activity of 4.38 A mgPd-1 and outperforms the Pd/TiO2 catalyst (2.39 A mgPd-1) by a factor of 1.83. This advancement not only surmounts a critical barrier in catalysis but also delineates a scalable pathway to bolster the efficacy of Pd-based catalysts in alkaline media.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124268, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38603962

ABSTRACT

Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.


Subject(s)
Aflatoxin B1 , Aptamers, Nucleotide , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Arachis/chemistry , Arachis/microbiology , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Food Contamination/analysis , Gold/chemistry , Magnetite Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Aspergillus
3.
Angew Chem Int Ed Engl ; 63(23): e202404834, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38588076

ABSTRACT

Transition metal oxides (TMOs) are key in electrochemical energy storage, offering cost-effectiveness and a broad potential window. However, their full potential is limited by poor understanding of their slow reaction kinetics and stability issues. This study diverges from conventional complex nano-structuring, concentrating instead on spin-related charge transfer and orbital interactions to enhance the reaction dynamics and stability of TMOs during energy storage processes. We successfully reconfigured the orbital degeneracy and spin-dependent electronic occupancy by disrupting the symmetry of magnetic cobalt (Co) sites through straightforward strain stimuli. The key to this approach lies in the unfilled Co 3d shell, which serves as a spin-dependent regulator for carrier transfer and orbital interactions within the reaction. We observed that the opening of these 'spin gates' occurs during a transition from a symmetric low-spin state to an asymmetric high-spin state, resulting in enhanced reaction kinetics and maintained structural stability. Specifically, the spin-rearranged Al-Co3O4 exhibited a specific capacitance of 1371 F g-1, which is 38 % higher than that of unaltered Co3O4. These results not only shed light on the spin effects in magnetic TMOs but also establish a new paradigm for designing electrochemical energy storage materials with improved efficiency.

4.
Adv Sci (Weinh) ; 11(22): e2310202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493491

ABSTRACT

The reductive catalytic fractionation (RCF) of lignocellulose, considering lignin valorization at design time, has demonstrated the entire utilization of all lignocellulose components; however, such processes always require catalysts based on precious metals or high-loaded nonprecious metals. Herein, the study develops an ultra-low loaded, atomically dispersed cobalt catalyst, which displays an exceptional performance in the RCF of lignocellulose. An approximately theoretical maximum yield of phenolic monomers (48.3 wt.%) from lignin is realized, rivaling precious metal catalysts. High selectivity toward 4-propyl-substituted guaiacol/syringol facilitates their purification and follows syntheses of highly adhesive polyesters. Lignin nanoparticles (LNPs) are generated by simple treatment of the obtained phenolic dimers and oligomers. RCF-resulted carbohydrate pulp are more obedient to enzymatic hydrolysis. Experimental studies on lignin model compounds reveal the concerted cleavage of Cα-O and Cß-O pathway for the rupture of ß-O-4 structure. Overall, the approach involves valorizing products derived from lignin biopolymer, providing the opportunity for the comprehensive utilization of all components within lignocellulose.

5.
Sci Rep ; 14(1): 5019, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424234

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine metabolic disorders. The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) reportedly can regulate the reproductive system. Despite studies, the alteration of MALAT1 expression in granulosa cells (GCs) from PCOS patients was inconsistent. To evaluate MALAT1 expression in GCs in different PCOS subgroups and its association with PCOS phenotypes, we collected GCs from 110 PCOS cases and 71 controls, and examined MALAT1 expression by quantitative PCR. The results showed MALAT1 expression was upregulated in PCOS cases, especially in insulin resistant (IR) PCOS subgroup, obese PCOS subgroup and non-hyperandrogenic (NHA) PCOS subgroup. MALAT1 expression was positively correlated with BMI and several metabolic parameters in controls. Interestingly, MALAT1 expression was notably associated with some critical endocrine indexes for PCOS, including E2, FSH, LH and LH/FSH ratio. In different PCOS subgroups, we found significant positive correlations with LH/FSH ratio in IR-PCOS and PCOS with normal weight, and with serum T and LH level in NHA-PCOS subgroup. Integrated analysis with lncRNA target databases and PCOS-related databases revealed MALAT1 could participate in PCOS by influencing immune response and lipids metabolism in GCs. In conclusion, MALAT1 was differently expressed in GCs in PCOS, especially in IR, obese and NHA PCOS subgroups. MALAT1 was likely involved in metabolism and immune response in GCs in PCOS. However, more studies are necessary to establish this concept.


Subject(s)
Polycystic Ovary Syndrome , RNA, Long Noncoding , Female , Humans , Follicle Stimulating Hormone , Granulosa Cells/metabolism , Insulin/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism , Phenotype , Polycystic Ovary Syndrome/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
6.
Small ; : e2307482, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412428

ABSTRACT

Manganese-based oxides (MnOx ) suffer from sluggish charge diffusion kinetics and poor cycling stability in sodium ion storage. Herein, an interfacial electric field (IEF) in CeO2 /MnOx is constructed to obtain high electronic/ionic conductivity and structural stability of MnOx . The as-designed CeO2 /MnOx exhibits a remarkable capacity of 397 F g-1 and favorable cyclic stability with 92.13% capacity retention after 10,000 cycles. Soft X-ray absorption spectroscopy and partial density of states results reveal that the electrons are substantially injected into the Mn t2g orbitals driven by the formed IEF. Correspondingly, the MnO6 units in MnOx are effectively activated, endowing the CeO2 /MnOx with fast charge transfer kinetics and high sodium ion storage capacity. Moreover, In situRaman verifies a remarkably increased structural stability of CeO2 /MnOx , which is attributed to the enhanced Mn─O bond strength and efficiently stabilized MnO6 units. Mechanism studies show that the downshift of Mn 3d-band center dramatically increases the Mn 3d-O 2p orbitals overlap, thus inhibiting the Jahn-Teller (J-T) distortion of MnOx during sodium ion insertion/extraction. This work develops an advanced strategy to achieve both fast and sustainable sodium ion storage in metal oxides-based energy materials.

7.
Reprod Biol Endocrinol ; 22(1): 24, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373962

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders in females of childbearing age. Various types of ovarian cells work together to maintain normal reproductive function, whose discordance often takes part in the development and progression of PCOS. Understanding the cellular heterogeneity and compositions of ovarian cells would provide insight into PCOS pathogenesis, but are, however, not well understood. Transcriptomic characterization of cells isolated from PCOS cases have been assessed using bulk RNA-seq but cells isolated contain a mixture of many ovarian cell types. METHODS: Here we utilized the reference scRNA-seq data from human adult ovaries to deconvolute and estimate cell proportions and dysfunction of ovarian cells in PCOS, by integrating various granulosa cells(GCs) transcriptomic data. RESULTS: We successfully defined 22 distinct cell clusters of human ovarian cells. Then after transcriptome integration, we obtained a gene expression matrix with 13,904 genes within 30 samples (15 control vs. 15 PCOS). Subsequent deconvolution analysis revealed decreased proportion of small antral GCs and increased proportion of KRT8high mural GCs, HTRA1high cumulus cells in PCOS, especially increased differentiation from small antral GCs to KRT8high mural GCs. For theca cells, the abundance of internal theca cells (TCs) and external TCs was both increased. Less TCF21high stroma cells (SCs) and more STARhigh SCs were observed. The proportions of NK cells and monocytes were decreased, and T cells occupied more in PCOS and communicated stronger with inTCs and exTCs. In the end, we predicted the candidate drugs which could be used to correct the proportion of ovarian cells in patients with PCOS. CONCLUSIONS: Taken together, this study provides insights into the molecular alterations and cellular compositions in PCOS ovarian tissue. The findings might contribute to our understanding of PCOS pathophysiology and offer resource for PCOS basic research.


Subject(s)
Polycystic Ovary Syndrome , Adult , Female , Humans , Polycystic Ovary Syndrome/metabolism , Transcriptome , Granulosa Cells/metabolism , Gene Expression Profiling , Basic Helix-Loop-Helix Transcription Factors/genetics
8.
Small ; 20(27): e2311124, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38258393

ABSTRACT

The electrochemical nitrogen oxidation reaction (NOR) holds significant potential to revolutionize the traditional nitrate synthesis processes. However, the progression in NOR has been notably stymied due to the sluggish kinetics of initial N2 adsorption and activation processes. Herein, the research embarks on the development of a CeO2-Co3O4 heterostructure, strategically engineered to facilitate the electron transfer from CeO2 to Co3O4. This orchestrated transfer operates to amplify the d-band center of the Co active sites, thereby enhancing N2 adsorption and activation dynamics by strengthening the Co─N bond and diminishing the resilience of the N≡N bond. The synthesized CeO2-Co3O4 manifests promising prospects, showcasing a significant HNO3 yield of 37.96 µg h-1 mgcat -1 and an elevated Faradaic efficiency (FE) of 29.30% in a 0.1 m Na2SO4 solution at 1.81 V versus RHE. Further substantiating these findings, an array of in situ methodologies coupled with DFT calculations vividly illustrate the augmented adsorption and activation of N2 on the surface of CeO2-Co3O4 heterostructure, resulting in a substantial reduction in the energy barrier pertinent to the rate-determining step within the NOR pathway. This research carves a promising pathway to amplify N2 adsorption throughout the electrochemical NOR operations and delineates a blueprint for crafting highly efficient NOR electrocatalysts.

9.
Sci China Life Sci ; 67(1): 51-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37721638

ABSTRACT

Obesity, which can arise from genetic or environmental factors, has been shown to cause serious damages to the reproductive system. The ovary, as one of the primary regulators of female fertility, is a complex organ comprised of heterogeneous cell types that work together to maintain a normal ovarian microenvironment (OME). Despite its importance, the effect of obesity on the entire ovary remains poorly documented. In this study, we performed ovary single-cell and nanoscale spatial RNA sequencing to investigate how the OME changed under different kinds of obesity, including high-fat diet (HFD) induced obesity and Leptin ablation induced obesity (OB). Our results demonstrate that OB, but not HFD, dramatically altered the proportion of ovarian granulosa cells, theca-interstitial cells, luteal cells, and endothelial cells. Furthermore, based on the spatial dynamics of follicular development, we defined four subpopulations of granulosa cell and found that obesity drastically disrupted the differentiation of mural granulosa cells from small to large antral follicles. Functionally, HFD enhanced follicle-stimulating hormone (FSH) sensitivity and hormone conversion, while OB caused decreased sensitivity, inadequate steroid hormone conversion, and impaired follicular development. These differences can be explained by the differential expression pattern of the transcription factor Foxo1. Overall, our study provides a powerful and high-resolution resource for profiling obesity-induced OME and offers insights into the diverse effects of obesity on female reproductive disorders.


Subject(s)
Endothelial Cells , Ovary , Female , Humans , Ovary/metabolism , Endothelial Cells/metabolism , Follicle Stimulating Hormone , Diet , Obesity/genetics , Obesity/metabolism
10.
J Am Chem Soc ; 145(49): 26699-26710, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38039528

ABSTRACT

Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.

11.
J Ovarian Res ; 16(1): 211, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936145

ABSTRACT

BACKGROUND: To study whether CAG repeat polymorphism of androgen receptor (AR) contributes to the risk of polycystic ovarian morphology (PCOM) with antral follicle count (AFC) ≥ 20 in the context of new international guideline of polycystic ovary syndrome (PCOS). METHODS: Blood of 109 PCOS cases and 61 controls were collected for the measurement of AR CAG repeats length by sequencing. The mean number and frequency distribution of CAG repeats length were observed. Detailed analysis was conducted by dividing PCOS cases into low AFC group (L-AFC, AFC < 20) and high AFC group (H-AFC, AFC ≥ 20) according to the new international evidence-based guideline. RESULTS: The portion of individuals with lower CAG repeats length in H-AFC group was significantly larger than those with higher CAG repeats length. Logistic model revealed individuals with lower CAG length tended to develop H-AFC. CONCLUSION: Lower CAG repeats length in the AR gene of PCOS cases increases risk of PCOM.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Receptors, Androgen/genetics , Polymorphism, Genetic , Anti-Mullerian Hormone
12.
Hum Reprod ; 38(Supplement_2): ii69-ii79, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982419

ABSTRACT

STUDY QUESTION: Is there any methylome alteration in women with PCOS who were diagnosed using the new international evidence-based guidelines? SUMMARY ANSWER: A total of 264 differentially methylated probes (DMPs) and 53 differentially methylated regions (DMRs) were identified in patients with PCOS and healthy controls. WHAT IS KNOWN ALREADY: PCOS is a common endocrine disorder among women of reproductive age and polycystic ovarian morphology (PCOM) is one of the main features of the disease. Owing to the availability of more sensitive ultrasound machines, the traditional diagnosis of PCOM according to the Rotterdam criteria (≥12 antral follicles per ovary) is currently debated as there is a risk of overdiagnosis. The new international evidence-based guidelines set the threshold for PCOM as ≥20 antral follicles per ovary when using endovaginal ultrasound transducers with a frequency bandwidth that includes 8 MHz. However, current DNA methylation studies in PCOS are still based on the Rotterdam criteria. This study aimed to explore aberrant DNA methylation in patients diagnosed with PCOS according to the new evidence-based guidelines. STUDY DESIGN, SIZE, DURATION: This cross-sectional case-control study included 34 PCOS cases diagnosed using new international evidence-based guidelines and 36 controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: A total of 70 women, including 34 PCOS cases and 36 controls, were recruited. DNA extracted from whole blood samples of participants were profiled using array technology. Data quality control, preprocessing, annotation, and statistical analyses were performed. Least absolute shrinkage and selection operator (LASSO) regression were used to build a PCOS diagnosis model with DNA methylation sites. MAIN RESULTS AND THE ROLE OF CHANCE: We identified 264 DMPs between PCOS cases and controls, which were mainly located in intergenic regions or gene bodies of the genome, CpG open sea sites, and heterochromatin of functional elements. Pathway enrichment analysis showed that DMPs were significantly enriched in biological processes involved in triglyceride regulation. Three of these DMPs overlapped with the PCOS susceptibility genes thyroid adenoma-associated protein (THADA), aminopeptidase O (AOPEP), and tripartite motif family-like protein 2 (TRIML2). Fifty-three DMRs were identified and their annotated genes were largely enriched in allograft rejection, thyroid hormone production, and peripheral downstream signaling effects. Two DMRs were closely related to the PCOS susceptibility genes, potassium voltage-gated channel subfamily A member 4 (KCNA4) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1). Finally, based on LASSO regression, we built a methylation marker model with high accuracy for PCOS diagnosis (AUC=0.952). LIMITATIONS, REASONS FOR CAUTION: The study cohort was single-center and the sample size was relatively limited. Further analyses with a larger number of participants are required. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study to identify DNA methylation alterations in women with PCOS diagnosed using the new international evidence-based guideline, and it provided new molecular insight into the application of the new guidelines. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2021YFC2700400), Basic Science Center Program of NSFC (31988101), CAMS Innovation Fund for Medical Sciences (2021-I2M-5-001), National Natural Science Foundation of China (32370916, 82071606, 82101707, 82192874, and 31871509), Shandong Provincial Key Research and Development Program (2020ZLYS02), Taishan Scholars Program of Shandong Province (ts20190988), and Fundamental Research Funds of Shandong University. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/diagnosis , Polycystic Ovary Syndrome/genetics , Epigenome , Case-Control Studies , Cross-Sectional Studies , Carrier Proteins
13.
Chem Commun (Camb) ; 59(89): 13355-13358, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37873615

ABSTRACT

The first dual nickel/photoredox-catalyzed enantioselective reductive cross-coupling of racemic α-chloro thioesters with aryl iodides has been developed. This strategy avoids the need for organometallic reagents or stoichiometric metal reductants. This reaction could tolerate a wide range of substrate scope with excellent reactivity and high enantioselectivities (up to 91% ee) to access a variety of chiral α-aryl thioesters. The synthetic utility of the corresponding α-aryl thioesters is demonstrated. Furthermore, we explored the mechanism of such an enantioselective radical cross-coupling process.

14.
Diabetes Care ; 46(12): 2249-2257, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37878528

ABSTRACT

OBJECTIVE: To uncover novel targets for the treatment of type 2 diabetes (T2D) by investigating rare variants with large effects in monogenic forms of the disease. RESEARCH DESIGN AND METHODS: We performed whole-exome sequencing in a family with diabetes. We validated the identified gene using Sanger sequencing in additional families and diabetes- and community-based cohorts. Wild-type and variant gene transgenic mouse models were used to study the gene function. RESULTS: Our analysis revealed a rare variant of the metallothionein 1E (MT1E) gene, p.C36Y, in a three-generation family with diabetes. This risk allele was associated with T2D or prediabetes in a community-based cohort. MT1E p.C36 carriers had higher HbA1c levels and greater BMI than those carrying the wild-type allele. Mice with forced expression of MT1E p.C36Y demonstrated increased weight gain, elevated postchallenge serum glucose and liver enzyme levels, and hepatic steatosis, similar to the phenotypes observed in human carriers of MT1E p.C36Y. In contrast, mice with forced expression of MT1E p.C36C displayed reduced weight and lower serum glucose and serum triglyceride levels. Forced expression of wild-type and variant MT1E demonstrated differential expression of genes related to lipid metabolism. CONCLUSIONS: Our results suggest that MT1E could be a promising target for drug development, because forced expression of MT1E p.C36C stabilized glucose metabolism and reduced body weight, whereas MT1E p.C36Y expression had the opposite effect. These findings highlight the importance of considering the impact of rare variants in the development of new T2D treatments.


Subject(s)
Diabetes Mellitus, Type 2 , Metallothionein , Prediabetic State , Animals , Humans , Mice , Blood Glucose/analysis , China , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , East Asian People , Glucose , Metallothionein/genetics , Mice, Transgenic/genetics , Prediabetic State/blood , Prediabetic State/genetics
15.
Int J Genomics ; 2023: 4969605, 2023.
Article in English | MEDLINE | ID: mdl-37662558

ABSTRACT

Background: Coronary artery ectasia (CAE) is an easily recognized abnormality of coronary artery anatomy and morphology. However, its pathogenesis remains unclear. Objectives: This study aimed to identify abnormal methylation-modified genes in patients with CAE, which could provide a research basis for CAE. Methods: Peripheral venous blood samples from patients with CAE were collected for RNA sequencing to identify differentially expressed genes (DEGs), followed by functional enrichment. Then, the DNA methylation profile of CAE was downloaded from GSE87016 (HumanMethylation450 BeadChip data, involving 11 cases and 12 normal controls) to identify differentially methylated genes (DMGs). Finally, after taking interaction genes between DEGs and DMGs, abnormal methylation-modified genes were identified, followed by protein-protein interaction analysis and expression validation using reverse transcriptase polymerase chain reaction. Results: A total of 152 DEGs and 4318 DMGs were obtained from RNA sequencing and the GSE87016 dataset, respectively. After taking interaction genes, 9 down-regulated DEGs due to hypermethylation and 11 up-regulated DEGs due to hypomethylation were identified in CAE. A total of 10 core abnormal methylation-modified genes were identified, including six down-regulated DEGs due to hypermethylation (netrin G1, ADAM metallopeptidase domain 12, immunoglobulin superfamily member 10, sarcoglycan dela, Dickkopf WNT signaling pathway inhibitor 3, and GATA binding protein 6), and four up-regulated DEGs due to hypomethylation (adrenomedullin, ubiquitin specific peptidase 18, lymphocyte antigen 6 family member E, and MX dynamin-like GTPase 1). Some signaling pathways were identified in patients with CAE, including cell adhesion molecule, O-glycan biosynthesis, and the renin-angiotensin system. Conclusions: Abnormal methylation-modified DEGs involved in signaling pathways may be involved in CAE development.

16.
ACS Nano ; 17(14): 13974-13984, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37410800

ABSTRACT

Efficient conversion of carbon dioxide (CO2) into value-added materials and feedstocks, powered by renewable electricity, presents a promising strategy to reduce greenhouse gas emissions and close the anthropogenic carbon loop. Recently, there has been intense interest in Cu2O-based catalysts for the CO2 reduction reaction (CO2RR), owing to their capabilities in enhancing C-C coupling. However, the electrochemical instability of Cu+ in Cu2O leads to its inevitable reduction to Cu0, resulting in poor selectivity for C2+ products. Herein, we propose an unconventional and feasible strategy for stabilizing Cu+ through the construction of a Ce4+ 4f-O 2p-Cu+ 3d network structure in Ce-Cu2O. Experimental results and theoretical calculations confirm that the unconventional orbital hybridization near Ef based on the high-order Ce4+ 4f and 2p can more effectively inhibit the leaching of lattice oxygen, thereby stabilizing Cu+ in Ce-Cu2O, compared with traditional d-p hybridization. Compared to pure Cu2O, the Ce-Cu2O catalyst increased the ratio of C2H4/CO by 1.69-fold during the CO2RR at -1.3 V. Furthermore, in situ and ex situ spectroscopic techniques were utilized to track the oxidation valency of copper under CO2RR conditions with time resolution, identifying the well-maintained Cu+ species in the Ce-Cu2O catalyst. This work not only presents an avenue to CO2RR catalyst design involving the high-order 4f and 2p orbital hybridization but also provides deep insights into the metal-oxidation-state-dependent selectivity of catalysts.

17.
Sci Rep ; 13(1): 9127, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277527

ABSTRACT

Diabetes is one of the most common phenotypes of Wolfram syndrome owing to the presence of the variants of the WFS1 gene and is often misdiagnosed as other types of diabetes. We aimed to explore the prevalence of WFS1-related diabetes (WFS1-DM) and its clinical characteristics in a Chinese population with early-onset type 2 diabetes (EOD). We sequenced all exons of the WFS1 gene in 690 patients with EOD (age at diagnosis ≤ 40 years) for rare variants. Pathogenicity was defined according to the standards and guidelines of the American College of Medical Genetics and Genomics. We identified 33 rare variants predicted to be deleterious in 39 patients. The fasting [1.57(1.06-2.22) ng/ml] and postprandial C-peptide levels [2.8(1.75-4.46) ng/ml] of the patients with such WFS1 variations were lower than those of the patients without WFS1 variation [2.09(1.43-3.05) and 4.29(2.76-6.07) respectively, ng/ml]. Six (0.9%) patients carried pathogenic or likely pathogenic variants; they met the diagnostic criteria for WFS1-DM according to the latest guidelines, but typical phenotypes of Wolfram syndrome were seldom observed. They were diagnosed at an earlier age and usually presented with an absence of obesity, impaired beta cell function, and the need for insulin treatment. WFS1-DM is usually mistakenly diagnosed as type 2 diabetes, and genetic testing is helpful for individualized treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Wolfram Syndrome , Humans , Diabetes Mellitus, Type 2/genetics , East Asian People , Genetic Testing , Phenotype , Wolfram Syndrome/diagnosis , Wolfram Syndrome/genetics , Wolfram Syndrome/pathology , Adult
18.
Front Endocrinol (Lausanne) ; 14: 1146124, 2023.
Article in English | MEDLINE | ID: mdl-37223048

ABSTRACT

Background: In recent years, the right ratio of 2nd and 4th digit length (2D:4D) is regarded as an anatomical marker of prenatal testosterone exposure. Polycystic ovary syndrome (PCOS) is a female masculinized disease and is determined by prenatal testosterone exposure. Whether the ratio in the right hand of PCOS women is reduced or not compared with non-PCOS women is under debate. To further investigate the relationship between PCOS and digit ratio, we systematically measured all the digit ratios. Methods: We recruited 34 non-PCOS women, 116 PCOS women, and 40 men and systematically measured all the ratios of digit length (2D:3D, 2D:4D, 2D:5D, 3D:4D, 3D:5D, and 4D:5D) of right hands and left hands. Results: Left 2D:3D, 2D:4D, and 2D:5D in men were significantly lower than those in non-PCOS women. Significantly lower digit ratios of left 2D:3D and 2D:4D were observed in PCOS compared with non-PCOS women. In the subgroup analysis, the left ratio of digit length in 2D:3D and 2D:5D of the hyperandrogenism subgroup was lower than that of the non-hyperandrogenism subgroup without statistical significance. The logistic regression model of PCOS revealed that 2D:3D, 2D:4D, 2D:5D, and 3D:4D of left hands were statistically related to the diagnosis of PCOS among all the digit ratios. Conclusion: Not only 2D:4D but also other digit ratios, such as 2D:3D and 2D:5D, are a marker of prenatal testosterone exposure and may be an anatomical marker of PCOS. The majority of these significant differences included left 2D, with the following order: non-PCOS women > PCOS women > men.


Subject(s)
Polycystic Ovary Syndrome , Male , Pregnancy , Female , Humans , Polycystic Ovary Syndrome/diagnosis , Digit Ratios , Extremities , Logistic Models , Testosterone
19.
Angew Chem Int Ed Engl ; 62(29): e202303794, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37226852

ABSTRACT

Electrocatalytic nitrogen reduction reaction (ENRR) has emerged as a promising approach to synthesizing green ammonia under ambient conditions. Tungsten (W) is one of the most effective ENRR catalysts. In this reaction, the protonation of intermediates is the rate-determining step (RDS). Enhancing the adsorption of intermediates is crucial to increase the protonation of intermediates, which can lead to improved catalytic performance. Herein, we constructed a strong interfacial electric field in WS2 -WO3 to elevate the d-band center of W, thereby strengthening the adsorption of intermediates. Experimental results demonstrated that this approach led to a significantly improved ENRR performance. Specifically, WS2 -WO3 exhibited a high NH3 yield of 62.38 µg h-1 mgcat -1 and a promoted faraday efficiency (FE) of 24.24 %. Furthermore, in situ characterizations and theoretical calculations showed that the strong interfacial electric field in WS2 -WO3 upshifted the d-band center of W towards the Fermi level, leading to enhanced adsorption of -NH2 and -NH intermediates on the catalyst surface. This resulted in a significantly promoted reaction rate of the RDS. Overall, our study offers new insights into the relationship between interfacial electric field and d-band center and provides a promising strategy to enhance the intermediates adsorption during the ENRR process.

20.
Front Nutr ; 10: 1159676, 2023.
Article in English | MEDLINE | ID: mdl-37252230

ABSTRACT

To investigate the distribution pattern of bioactive components and their correlations between citrus varieties, we thoroughly analyzed secondary metabolites (including flavonoids, phenolic acids, carotenoids, and limonoids) in the peel and pulp of 11 citrus varieties from the production area of Zhejiang. Citrus peels accumulated metabolites far more than the pulp, and the accumulation varied significantly between species. Flavonoids were the most abundant compounds, followed by phenolic acids, with carotenoids and limonoids being far less abundant than the first two, but limonoids were more abundant than carotenoids. Hesperidin was the main flavonoid in most varieties, but cocktail grapefruit and Changshanhuyou contained naringin, with Ponkan having the most abundant polymethoxylated flavones (PMFs). The major components of phenolic acids, carotenoids, and limonoids were ferulic acid, ß-cryptoxanthin, and limonin, respectively. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) indicated that these components were mostly correlated with each other, and these citrus varieties could be categorized into four groups by pulp and three groups by peel. The obtained results filled the data gap for secondary metabolites from local citrus and could provide data references for citrus resource utilization, selection and breeding of superior varieties, and other research.

SELECTION OF CITATIONS
SEARCH DETAIL
...