Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Talanta ; 279: 126624, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089079

ABSTRACT

Layered double hydroxides (LDHs) have attracted significant attention due to their compositional and structural flexibility. However, it is challenging but meaningful to design and fabricate hierarchical mixed-dimensional LDHs with synergistic effects to increase the electrical conductivity of LDHs and promote the intrinsic activity. Herein, 3D hollow NiCo-LDH nanocages decorated porous biochar (3D NiCo-LDH/PBC) has been synthesized by using ZIF-67 as precursor, which was utilized for constructing electrochemical sensing platform to realize simultaneous determination of Cu2+ and Hg2+. The 3D NiCo-LDH/PBC possessed the characteristics of hollow material and three-dimensional porous material, revealing a larger surface area, more exposed active sites, and faster electron transfer, which is beneficial to enhancing its electrochemical performance. Consequently, the developed sensor displayed good performance for simultaneously detecting Cu2+ and Hg2+ with ultra-low limit of detection (LOD) of 0.03 µg L-1 and 0.03 µg L-1, respectively. The proposed sensor also demonstrated excellent stability, repeatability and reproducibility. Furthermore, the sensor can be successfully used for the electrochemical analysis of Cu2+ and Hg2+ in lake water sample with satisfactory recovery, which is of great feasibility for practical application.

2.
Food Chem ; 458: 140275, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964102

ABSTRACT

Enzyme-inhibited electrochemical sensor is a promising strategy for detecting organophosphorus pesticides (OPs). However, the poor stability of enzymes and the high oxidation potential of thiocholine signal probe limit their potential applications. To address this issue, an indirect strategy was proposed for highly sensitive and reliable detection of chlorpyrifos by integrating homogeneous reaction and heterogeneous catalysis. In the homogeneous reaction, Hg2+ with low oxidation potential was employed as signal probe for chlorpyrifos detection since its electroactivity can be inhibited by thiocholine, which was the hydrolysate of acetylthiocholine catalyzed by acetylcholinesterase. Additionally, Co,N-doped hollow porous carbon nanocage@carbon nanotubes (Co,N-HPNC@CNT) derived from ZIF-8@ZIF-67 was utilized as high-performance electrode material to amplify the stripping voltammetry signal of Hg2+. Thanks to their synergistic effect, the sensor exhibited outstanding sensing performance, excellent stability and good anti-interference ability. This strategy paves the way for the development of high-performance OP sensors and their application in food safety.


Subject(s)
Electrochemical Techniques , Organophosphorus Compounds , Pesticides , Pesticides/analysis , Pesticides/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Catalysis , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Nanotubes, Carbon/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Limit of Detection , Chlorpyrifos/analysis , Chlorpyrifos/chemistry , Electrodes , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Food Contamination/analysis , Mercury/analysis , Mercury/chemistry
3.
Food Chem ; 456: 140063, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38878547

ABSTRACT

Precisely detecting trace pesticides and their residues in food products is crucial for ensuring food safety. Herein, a high-performance electrochemical sensing platform was developed for the detection of carbendazim (CBZ) using Co,N co-doped hollow carbon nanocage@carbon nanotubes (Co,N-HC@CNTs) obtained from core-shell ZIF-8@ZIF-67 combined with a poly(3,4-ethylenedioxythiophene) (PEDOT) molecularly imprinted polymer (MIP). The Co,N-HC@CNTs exhibited excellent electrocatalytic performance, benefitting from the synergistic effect of CNTs that provide a large specific surface area and excellent electrical conductivity, Co,N co-doped carbon nanocages that offer high electrocatalytic activity and hollow nanocage structures that ensure rapid diffusion kinetics. The conductive PEDOT-MIP provided specific binding sites for CBZ detection and significantly amplified the detection signal. The sensor showed superior selectivity for CBZ with an extremely low detection limit of 1.67 pmol L-1. Moreover, the method was successfully applied to detect CBZ in tomato, orange and apple samples, achieving satisfactory recovery and accuracy, thus demonstrating its practical feasibility.


Subject(s)
Benzimidazoles , Bridged Bicyclo Compounds, Heterocyclic , Carbamates , Electrochemical Techniques , Electrodes , Food Contamination , Nanotubes, Carbon , Polymers , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrochemical Techniques/instrumentation , Nanotubes, Carbon/chemistry , Carbamates/analysis , Carbamates/chemistry , Polymers/chemistry , Food Contamination/analysis , Benzimidazoles/chemistry , Benzimidazoles/analysis , Molecularly Imprinted Polymers/chemistry , Limit of Detection , Molecular Imprinting , Malus/chemistry , Solanum lycopersicum/chemistry , Citrus sinensis/chemistry
4.
Anal Chim Acta ; 1290: 342202, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246745

ABSTRACT

BACKGROUND: Lanthanide metal-organic frameworks (Ln-MOFs) are a kind of emerging crystalline porous materials with high fluorescence and easy-to-tunable properties, making them ideal for sensing applications. However, current Ln-MOFs based fluorescent probes are primarily single-emissive or fluorescence-quenched, which greatly limited the detection performances such as sensitivity, accuracy and repeatability, thereby hindering their applications in efficient target monitoring and related disease diagnosis. To address these issues, the reasonable design of Ln-MOFs equipped with dual fluorescence emissions and light-up mode is urgently needed for a high-performance biosensor. RESULTS: A dual-emissive europium doped UiO-66 (Eu@UiO-66-NH2-PMA)-based ratiometric fluorescent biosensing platform was constructed for highly sensitive and selective detection of the histidinemia biomarker-histidine (His). Eu@UiO-66-NH2-PMA (pyromellitic acid abbreviated as PMA) was synthesized utilizing a post-synthetic modification method via coordination interactions between the free -COOH of UiO-66-NH2-PMA and Eu3+, which exhibited characteristic peaks of broad ligand emission and sharp Eu3+ emissions simultaneously. Considering that Cu2+ had the excellent fluorescence quenching ability toward Eu3+ and superior affinity with His, it was deliberately introduced into the Eu@UiO-66-NH2-PMA, acting as active sites for target His responsiveness. The Eu@UiO-66-NH2-PMA/Cu2+/His ternary competition system demonstrated a low detection limit of 74 nM, excellent selectivity and good anti-interference capability that allowed for sensitive analysis of His levels in milk and human serum samples. SIGNIFICANCE: Attributing to the superior luminescent properties, good stability and self-calibration capability of Eu@UiO-66-NH2-PMA, the developed ratiometric light-up sensing platform enabled sensitive, selective and credible analysis of His in complex practical samples, which might provide an available tool for food nutrition guideline and diagnostic applications of His related diseases.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Europium , Histidine Ammonia-Lyase/deficiency , Lanthanoid Series Elements , Metal-Organic Frameworks , Phthalic Acids , Humans , Histidine , Biomarkers , Fluorescent Dyes
5.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894481

ABSTRACT

Their unique layered structure, large specific surface area, good stability, high negative charge density between layers, and customizable composition give layered double hydroxides (LDHs) excellent adsorption and detection performance for heavy metal ions (HMIs). However, their easy aggregation and low electrical conductivity limit the practical application of untreated LDHs. In this work, a ternary MgZnFe-LDHs engineered porous biochar (MgZnFe-LDHs/PBC) heterojunction was proposed as a sensing and adsorption material for the effective detection and removal of Cd2+ from wastewater. The growth of MgZnFe-LDHs in the PBC pores not only reduces the accumulation of MgZnFe-LDHs, but also improves the electrical conductivity of the composite. The synergistic effect between MgZnFe-LDHs and PBC enables the composite to achieve a maximum adsorption capacity of up to 293.4 mg/g for Cd2+ in wastewater. Meanwhile, the MgZnFe-LDHs/PBC-based electrochemical sensor shows excellent detection performance for Cd2+, presenting a wide linear range (0.01 ng/L-1 mg/L), low detection limit (3.0 pg/L), good selectivity, and stability. The results indicate that MgZnFe-LDHs/PBC would be a potential material for detecting and removing Cd2+ from wastewater.


Subject(s)
Cadmium , Water Pollutants, Chemical , Cadmium/chemistry , Wastewater , Adsorption , Porosity , Water Pollutants, Chemical/chemistry , Hydroxides/chemistry
6.
Nanotechnology ; 34(50)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37725965

ABSTRACT

In this work, an electrochemical sensor based on ion-imprinted polymer/Au nanoparticles/porous biochar (IIP/AuNPs/PBC) composite was proposed for the highly selective and sensitive detection of Pb2+. In this work, poly (thionine) (pTHI) served simultaneously as imprinted polymer and reference probe. It could not only realize the specific detection of Pb2+, but also provide an internal reference signal to eliminate the influence of human and environmental factors on the detection signal and further improve the stability of the sensor. In addition, the AuNPs/PBC composite with large specific surface area, excellent electron transport and electrocatalytic performance could effectively enhance the detection signal as a carrier material. At the same time, the AuNPs on the PBC surface would promote the formation of uniform and stable IIP through Au-S bonds. The synergistic effect between IIP, AuNPs/PBC and ratiometric signal mode gave the Pb2+sensor excellent performance, including a wide linear range (0.1-1000µg l-1), low detection limit (0.03µg l-1, S/N = 3), excellent selectivity and stability. All these results indicate that the proposed sensor could provide a meaningful reference for highly selective detection of heavy metal ions (HMIs).

7.
Molecules ; 28(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513225

ABSTRACT

Mercuric ion (Hg2+) in aqueous media is extremely toxic to the environment and organisms. Therefore, the ultra-trace electrochemical determination of Hg2+ in the environment is of critical importance. In this work, a new electrochemical Hg2+ sensing platform based on porous activated carbon (BC/Cu2O) modified with cuprous oxide was developed using a simple impregnation pyrolysis method. Differential pulse anodic stripping voltammetry (DPASV) was used to investigate the sensing capability of the BC/Cu2O electrode towards Hg2+. Due to the excellent conductivity and large specific surface area of BC, and the excellent catalytic activity of Cu2O nanoparticles, the prepared BC/Cu2O electrode exhibited excellent electrochemical activity. The high sensitivity of the proposed system resulted in a low detection limit of 0.3 ng·L-1 and a wide linear response in the ranges from 1.0 ng·L-1 to 1.0 mg·L-1. In addition, this sensor was found to have good accuracy, acceptable precision, and reproducibility. All of these results show that the BC/Cu2O composite is a promising material for Hg2+ electrochemical detection.

8.
Molecules ; 28(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050025

ABSTRACT

In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 µM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis.


Subject(s)
Flavanones , Humans , Reproducibility of Results , Flavanones/urine
9.
Mikrochim Acta ; 190(4): 146, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36943487

ABSTRACT

Heterostructured TiO2@MXene rich in oxygen vacancies defects (VO-TiO2@MXene) has been developed to construct an electrochemical sensing platform for imidacloprid (IMI) determination. For the material design, TiO2 nanoparticles were firstly in situ grown on MXene and used as a scaffolding to prevent the stack of MXene nanosheets. The obtained TiO2@MXene heterostructure displays excellent layered structure and large specific surface area. After that, electrochemical activation is utilized to treat TiO2@MXene, which greatly increases the concentration of surface oxygen vacancies (VOs), thereby remarkably enhancing the conductivity and adsorption capacity of the composite. Accordingly, the prepared VO-TiO2@MXene displays excellent electrocatalytic activity toward the reduction of IMI. Under optimum conditions, cyclic voltammetry and linear sweep voltammetry techniques were utilized to investigate the electrochemical behavior of IMI at the VO-TiO2@MXene/GCE. The proposed sensor based on VO-TiO2@MXene presents an obvious reduction peak at -1.05 V(vs. Hg|Hg2Cl2) with two linear ranges from 0.07 - 10.0 µM and 10.0 - 70.0 µM with a detection limit of 23.3 nM (S/N= 3). Furthermore, the sensor provides a reliable result for detecting IMI in fruit and vegetable samples with a recovery of 97.9-103% and RSD≤ 4.3%. A sensitive electrochemical sensing platform was reported for imidacloprid (IMI) determination based on heterostructured TiO2@MXene rich in oxygen vacancy defects.


Subject(s)
Oxygen , Vegetables , Fruit , Electrochemical Techniques/methods
10.
Mikrochim Acta ; 190(3): 98, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806988

ABSTRACT

Graphdiyne (GDY) has attracted a lot of interest in electrochemical sensing application with the advantages of a large conjugation system, porous structure, and high structure defects. Herein, to further improve the sensing effect of GDY, conductive MWCNTs were chosen as the signal accelerator. To get a stable composite material, polydopamine (PDA) was employed as connecting bridge between GDY and MWCNTs-NH2, where DA was firstly polymerized onto GDY, followed by covalently linking MWCNTs-NH2 with PDA through Michael-type reaction. The formed GDY@PDA/MWCNTs-NH2 composite was then explored as an electrochemical sensor for benomyl (Ben) determination. GDY assists the adsorption and accumulation of Ben molecules to the sensing surface, while MWCNTs-NH2 can enhance the electrical conductivity and electrocatalytic activity, all of which contributing to the significantly improved performance. The proposed sensor displays an obvious oxidation peak at 0.72 V (vs. Hg|Hg2Cl2) and reveals a wide linear range from 0.007 to 10.0 µM and a low limit of detection (LOD) of 1.8 nM (S/N = 3) toward Ben detection. In addition, the sensor shows high stability, repeatability, reproducibility, and selectivity. The feasibility of this sensor was demonstrated by detecting Ben in apple and cucumber samples with a recovery of 94-106% and relative standard deviations (RSDs) less than 2.3% (n = 5). A sensitive electrochemical sensing platform was reported for benomyl (Ben) determination based on a highly stable GDY@PDA/MWCNTs-NH2 composite.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Electrochemical Techniques , Benomyl , Reproducibility of Results
11.
Food Chem ; 402: 134379, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36179525

ABSTRACT

The development of effective electrochemical methods for the determination of pesticide residues is highly desirable for food safety requirements. Herein, a novel electrochemical sensing strategy for indirect detection of thiabendazole (TBZ) was achieved by monitoring the anodic stripping peak signal change of media Cu2+ induced by a significant activity difference between active Cu2+ and inactive Cu2+-TBZ complexes. In this sensing system, a heterostructured Ti3C2Tx-TiO2 composite synthesized via a simple in-situ-oxidization strategy is used as the electrode material to boost the anodic stripping peak signal. After optimizing various conditions, the developed sensor presents satisfactory analytical performance for TBZ assay with a linear range from 0.3 to 100.0 nM and a limit of detection as low as 0.1 nM (S/N = 3). Furthermore, the proposed sensing platform also exhibits outstanding anti-interference, repeatability, and stability, which is effective for the determination of TBZ in fruit and water samples.


Subject(s)
Pesticide Residues , Thiabendazole , Thiabendazole/analysis , Fruit/chemistry , Pesticide Residues/analysis , Titanium/analysis , Water/analysis , Electrodes
12.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296434

ABSTRACT

A facile and sensitive electrochemical aptamer sensor (aptasensor) based on Au nanoparticles-decorated porous carbon (AuNPs/PC) composite was developed for the efficient determination of the antibiotic drug chloramphenicol (CAP). AuNPs modified metal-organic framework (AuNPs/ZIF-8) is applied as a precursor to synthesize the porous carbon with homogeneous AuNPs distribution through a direct carbonization step under nitrogen atmosphere. The as-synthesized AuNPs/PC exhibits high surface area and improved conductivity. Moreover, the loading AuNPs could enhance the attachment of the aptamers on the surface of electrode through the Au-S bond. When added to CAP, poorly conductive aptamer-CAP complexes are formed on the sensor surface, which increases the hindrance to electron transfer resulting in a decrease in electrochemical signal. Based on this mechanism, the developed CAP aptasensor represents a wide linear detection range of 0.1 pM to 100 nM with a low detection limit of 0.03 pM (S/N = 3). In addition, the proposed aptasensor was employed for the analysis of CAP in honey samples and provided satisfactory recovery.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Metal Nanoparticles , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Gold/chemistry , Chloramphenicol , Carbon/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Porosity , Metal Nanoparticles/chemistry , Limit of Detection , Graphite/chemistry , Nitrogen/chemistry , Anti-Bacterial Agents
13.
Molecules ; 27(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296450

ABSTRACT

In this work, a two-dimensional leaf-like framework-L embedded electrochemically reduced graphene oxide (ERGO@ZIF-L) was proposed as an outstanding electrode material for the sensitive electrochemical sensing of benomyl (BM). ZIF-L is surrounded by ERGO, which could effectively ensure the stability and dispersion of ZIF-L. With this unique combination, the prepared ERGO@ZIF-L displayed excellent synergistic characteristics with a large surface area, excellent conductivity, plentiful active sites, and high electrocatalytic properties, thus endowing it with high sensitivity for BM determination. The experimental parameters, such as solution pH, material volume, and accumulation time, were optimized. Under optimal conditions, the BM sensor showed a wide linear range (0.009-10.0 µM) and low-limit detection (3.0 nM). Moreover, the sensor displayed excellent stability, repeatability, and reproducibility, and good anti-interference capability. The method was successfully applied to detect BM in real-world samples.


Subject(s)
Benomyl , Graphite , Electrochemical Techniques/methods , Reproducibility of Results , Graphite/chemistry , Electrodes
14.
Adv Sci (Weinh) ; 9(33): e2203698, 2022 11.
Article in English | MEDLINE | ID: mdl-36253152

ABSTRACT

Nanostructures made entirely of DNAs display great potential as chemotherapeutic drug carriers but so far cannot achieve sufficient clinic therapy outcomes due to off-target toxicity. In this contribution, an aptamer-embedded hierarchical DNA nanocluster (Apt-eNC) is constructed as an intelligent carrier for cancer-targeted drug delivery. Specifically, Apt-eNC is designed to have a built-in reserve pool in the interior cavity from which aptamers may move outward to function as needed. When surface aptamers are degraded, ones in reserve pool can move outward to offer the compensation, thereby magically preserving tumor-targeting performance in vivo. Even if withstanding extensive aptamer depletion, Apt-eNC displays a 115-fold enhanced cell targeting compared with traditional counterparts and at least 60-fold improved tumor accumulation. Moreover, one Apt-eNC accommodates 5670 chemotherapeutic agents. As such, when systemically administrated into HeLa tumor-bearing BALB/c nude mouse model, drug-loaded Apt-eNC significantly inhibits tumor growth without systemic toxicity, holding great promise for high precision therapy.


Subject(s)
Endonucleases , Neoplasms , Animals , Mice , DNA , Ligands , Neoplasms/drug therapy , Oligonucleotides
15.
Molecules ; 27(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956904

ABSTRACT

In this work, ß-cyclodextrin (ß-CD)/mesoporous carbon (CMK-8) nanocomposite was synthesized and used as an electrochemical sensing platform for highly sensitive and selective detection of Cu2+. The morphology and structure of ß-CD/CMK-8 were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). In addition, the dates from electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) demonstrated that the ß-CD/CMK-8 possessed a fast electronic transfer rate and large effective surface area. Besides this, the ß-CD/CMK-8 composite displayed high enrichment ability toward Cu2+. As a result of these impressive features, the ß-CD/CMK-8 modified electrode provided a wide linear response ranging from 0.1 ng·L-1 to 1.0 mg·L-1 with a low detection limit of 0.3 ng·L-1. Furthermore, the repeatability, reproducibility and selectivity of ß-CD/CMK-8 towards Cu2+ were commendable. The sensor could be used to detect Cu2+ in real samples. All in all, this work proposes a simple and sensitive method for Cu2+ detection, which provides a reference for the subsequent detection of HMIs.


Subject(s)
Nanotubes, Carbon , beta-Cyclodextrins , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Nanotubes, Carbon/chemistry , Reproducibility of Results , beta-Cyclodextrins/chemistry
16.
Molecules ; 27(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014459

ABSTRACT

Electrochemically activated glassy carbon electrode (AGCE) was fabricated and applied for sensitive and selective detection of sunset yellow (SY). The electroanalysis of SY was investigated by square wave voltammetry (SWV). Owed to the specific oxygen-contained functional groups and the outstanding conductivity of AGCE, the proposed sensor exhibits an enhanced oxidation peak current of SY when compared with non-activated glass carbon electrode (GCE). Under the optimal analytical conditions, the oxidation peak current is linear with SY concentration in the range of 0.005-1.0 µM. The low limit of detection is 0.00167 µM (S/N = 3). This method is applied for the detection of SY in the actual samples. The recovery is between 96.19 and 103.47%, indicating that AGCE is suitable for the determination of SY in beverage sample.


Subject(s)
Carbon , Graphite , Azo Compounds , Electrochemical Techniques/methods , Electrodes
17.
Molecules ; 27(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35889389

ABSTRACT

Sensitive detection and efficient removal of heavy metal ions with high toxicity and mobility are of great importance for environmental monitoring and control. Although several kinds of functional materials have been reported for this purpose, their preparation processes are complicated. Herein, nitrogen self-doped activated porous biochar (NAC) was synthesized in a facile process via an activation-carbonization strategy from cicada shell rich in chitin, and subsequently employed as an effective functional material for the simultaneous determination and removal of Cu2+ from aqueous media. With its unique porous structure and abundant oxygen-containing functional groups, along with the presence of heteroatoms, NAC exhibits high sensitivity for the electrochemical sensing of Cu2+ in concentrations ranging from 0.001 to 1000 µg·L-1, with a low detection limit of 0.3 ng·L-1. Additionally, NAC presents an excellent removal efficiency of over 78%. The maximum adsorption capacity is estimated at 110.4 mg/g. These excellent performances demonstrate that NAC could serve as an efficient platform for the detection and removal of Cu2+ in real environmental areas.


Subject(s)
Hemiptera , Metals, Heavy , Animals , Carbon/chemistry , Metals, Heavy/chemistry , Nitrogen/chemistry , Porosity
18.
Nanotechnology ; 33(44)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35878583

ABSTRACT

Herein, a facile ratiometric electrochemical method was developed for sensitive sensing of riboflavin (RF) based on hierarchical porous biochar (HPB) modified electrode. In this sensing system, the reference paracetamol (PA) was directly added into electrolyte solution without the requirement of complex immobilization process. HPB derived from KOH-activated Soulangeana sepals displays hierarchical porous structure, high specific surface area and rich oxygen-containing functional groups, which is favorable for RF adsorption and enrichment. Besides, the excellent electronic conductivity and superior electrocatalytic activity of HPB can effectively promote the electrooxidation of RF. Moreover, the dual-signal strategy greatly improves the reproducibility and reliability of electrochemical detection. Based on the proposed ratiometric sensing platform, the sensor exhibits a wider linear range of 0.0007-10µM and a lower limit of detection of 0.2 nM. The method also presents good selectivity and has been applied to the determination of RF in milk samples with satisfactory results.


Subject(s)
Electrochemical Techniques , Riboflavin , Carbon/chemistry , Charcoal , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Porosity , Reproducibility of Results
19.
Anal Bioanal Chem ; 414(14): 4119-4127, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35449471

ABSTRACT

In this work, carbon nanohorn (CNH)-decorated multi-walled carbon nanotube (MWCNT) (CNH@MWCNT) composite was prepared and used to modify glass carbon electrode (GCE) as sensitive electrochemical sensor for niclosamide (NA) determination. Herein, the decoration of CNHs induces higher dispersibility for MWCNTs, and endows the composite with better conductivity, larger surface area, and higher catalytic activity, which leads to significantly enhanced electrochemical behavior toward NA oxidation. The parameters such as mass ratios of CNHs and MWCHTs, the amount of composite materials, the accumulation time, and the solution pH are systematically optimized. Under optimized conditions, the developed electrochemical sensor exhibits a low detection limit of 2.0 nM with a wide linear range of 7.0 nM-10.0 µM and high anti-interference ability. In addition, the sensor displays good stability, repeatability, and reproducibility. The feasibility of the assay was verified by testing NA in brown rice and rice field water samples.


Subject(s)
Electrochemical Techniques , Nanotubes, Carbon , Electrodes , Limit of Detection , Niclosamide , Reproducibility of Results
20.
Molecules ; 27(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35335235

ABSTRACT

A simple and label-free electrochemical aptasensor was developed for ultra-sensitive determination of chloramphenicol (CAP) based on a 2D transition of metal carbides (MXene) loaded with gold nanoparticles (AuNPs). The embedded AuNPs not only inhibit the aggregation of MXene sheets, but also improve the quantity of active sites and electronic conductivity. The aptamers (Apts) were able to immobilize on the MXene-AuNP modified electrode surface through Au-S interaction. Upon specifically binding with CAP with high affinity, the CAP-Apt complexes produced low conductivity on the aptasensor surface, leading to a decreased electrochemical signal. The resulting current change was quantitatively correlated with CAP concentration. Under optimized experimental conditions, the constructed aptasensor exhibited a good linear relationship within a wide range of 0.0001-10 nM and with a low detection limit of 0.03 pM for CAP. Moreover, the developed aptasensor has been applied to the determination of CAP concentration in honey samples with satisfactory results.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Honey , Metal Nanoparticles , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Chloramphenicol/analysis , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL