Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
2.
Respirology ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806394

ABSTRACT

BACKGROUND AND OBJECTIVE: Robotic-assisted bronchoscopy (RAB) is an emerging modality to sample pulmonary lesions. Cone-beam computed tomography (CBCT) can be incorporated into RAB. We investigated the magnitude and predictors of patient and staff radiation exposure during mobile CBCT-guided shape-sensing RAB. METHODS: Patient radiation dose was estimated by cumulative dose area product (cDAP) and cumulative reference air kerma (cRAK). Staff equivalent dose was calculated based on isokerma maps and a phantom simulation. Patient, lesion and procedure-related factors associated with higher radiation doses were identified by logistic regression models. RESULTS: A total of 198 RAB cases were included in the analysis. The median patient cDAP and cRAK were 10.86 Gy cm2 (IQR: 4.62-20.84) and 76.20 mGy (IQR: 38.96-148.38), respectively. Among staff members, the bronchoscopist was exposed to the highest median equivalent dose of 1.48 µSv (IQR: 0.85-2.69). Both patient and staff radiation doses increased with the number of CBCT spins and targeted lesions (p < 0.001 for all comparisons). Patient obesity, negative bronchus sign, lesion size <2.0 cm and inadequate sampling by on-site evaluation were associated with a higher patient dose, while patient obesity and inadequate sampling by on-site evaluation were associated with a higher bronchoscopist equivalent dose. CONCLUSION: The magnitude of patient and staff radiation exposure during CBCT-RAB is aligned with safety thresholds recommended by regulatory authorities. Factors associated with a higher radiation exposure during CBCT-RAB can be identified pre-operatively and solicit procedural optimization by reinforcing radiation protective measures. Future studies are needed to confirm these findings across multiple institutions and practices.

4.
Front Endocrinol (Lausanne) ; 15: 1344917, 2024.
Article in English | MEDLINE | ID: mdl-38745949

ABSTRACT

Background: Previous studies have reported that the occurrence and development of osteonecrosis is closely associated with immune-inflammatory responses. Mendelian randomization was performed to further assess the causal correlation between 41 inflammatory cytokines and osteonecrosis. Methods: Two-sample Mendelian randomization utilized genetic variants for osteonecrosis from a large genome-wide association study (GWAS) with 606 cases and 209,575 controls of European ancestry. Another analysis included drug-induced osteonecrosis with 101 cases and 218,691 controls of European ancestry. Inflammatory cytokines were sourced from a GWAS abstract involving 8,293 healthy participants. The causal relationship between exposure and outcome was primarily explored using an inverse variance weighting approach. Multiple sensitivity analyses, including MR-Egger, weighted median, simple model, weighted model, and MR-PRESSO, were concurrently applied to bolster the final results. Results: The results showed that bFGF, IL-2 and IL2-RA were clinically causally associated with the risk of osteonecrosis (OR=1.942, 95% CI=1.13-3.35, p=0.017; OR=0.688, 95% CI=0.50-0.94, p=0.021; OR=1.386, 95% CI=1.04-1.85, p = 0.026). there was a causal relationship between SCF and drug-related osteonecrosis (OR=3.356, 95% CI=1.09-10.30, p=0.034). Conclusion: This pioneering Mendelian randomization study is the first to explore the causal link between osteonecrosis and 41 inflammatory cytokines. It conclusively establishes a causal association between osteonecrosis and bFGF, IL-2, and IL-2RA. These findings offer valuable insights into osteonecrosis pathogenesis, paving the way for effective clinical management. The study suggests bFGF, IL-2, and IL-2RA as potential therapeutic targets for osteonecrosis treatment.


Subject(s)
Cytokines , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteonecrosis , Humans , Osteonecrosis/genetics , Cytokines/genetics , Polymorphism, Single Nucleotide , Interleukin-2/genetics , Fibroblast Growth Factor 2/genetics , Inflammation/genetics
5.
Phys Chem Chem Phys ; 26(19): 14194-14204, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713135

ABSTRACT

Constructing Z-scheme heterojunctions incorporating an exquisite hollow structure is an effective performance regulation strategy for the realization of high quantum efficiency and a strong redox ability over photocatalysts. Herein, we report the delicate design and preparation of a core-shell hollow CdS@CoTiO3 Z-scheme heterojunction with a CdS nanoparticle (NP)-constructed outer shell supported on a CoTiO3 nanorod (NR) inner shell. The in situ growth synthetic method led to a tightly connected interface for the heterojunction between CdS and CoTiO3, which shortened the transport distance of photoinduced charges from the interface to the surface. The promoted charge carrier separation efficiency and the retained strong redox capacity caused by the Z-scheme photoinduced charge-transfer mechanism were mainly responsible for the boosted photocatalytic performance. Additionally, the well-designed core-shell structure afforded a larger interfacial area by the multiple direction contact between CdS and CoTiO3, ensuring sufficient channels for efficient charge transfer, and thus further boosting the photocatalytic activity. As an efficient photocatalyst, the optimized CdS@CoTiO3 nanohybrids displayed excellent 2,4-dichlorophenol (2,4-DCP) and tetracycline (TC) degradation efficiencies of 91.3% and 91.8%, respectively. This study presents a Z-scheme heterojunction based on ecofriendly CoTiO3, which could be valuable for the development of metal perovskite photocatalysts for application in environmental remediation, and also demonstrated the tremendous potential of integrating a Z-scheme heterojunction with the morphology design of photocatalyts.

6.
Int Immunopharmacol ; 134: 112190, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703569

ABSTRACT

Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.

7.
Foods ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38790784

ABSTRACT

Tartronic acid is known for its potential to inhibit sugar-to-lipid conversion in the human body, leading to weight loss and fat reduction. This compound is predominantly found in cucumbers and other cucurbit crops. Therefore, cultivating cucumbers with high tartronic acid content holds significant health implications. In this study, we assessed the tartronic acid content in 52 cucumber germplasms with favorable overall traits and identified 8 cucumber germplasms with elevated tartronic acid levels. Our investigation into factors influencing cucumber tartronic acid revealed a decrease in content with fruit development from the day of flowering. Furthermore, tartronic acid content was higher in early-harvested fruits compared to late-harvested ones, with the rear part of the fruit exhibiting significantly higher content than other parts. Foliar spraying of microbial agents increased tartronic acid content by 84.4%. This study provides valuable resources for breeding high tartronic acid cucumbers and offers practical insights for optimizing cucumber production practices.

8.
Anim Nutr ; 17: 100-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770031

ABSTRACT

Nitrogen pollution resulting from excessive feed consumption poses a significant challenge for modern swine production. Precision nutrition technology seems to be an effective way to solve this problem; therefore, understanding the law of pig body composition deposition is a prerequisite. This study investigated the sex effects on growth performance, body composition, nutrient deposition, gut microbiota, and short-chain fatty acids (SCFA) in weaned piglets. Eighty weaned pigs were randomly allocated to 2 treatments according to the sex of pigs. An individual pig was considered as a treatment replicate. Six body weights (BW 5, 7, 11, 15, 20, and 25 kg) were chosen as experimental points; for each point 10 piglets close to the average BW (5 males and 5 females) were slaughtered, and there was one growth phase between each 2 BW points. Results indicated that the males had higher average daily gain (ADG) and average daily feed intake (ADFI) compared to the females (P < 0.05) at growth phases 15 to 20 kg BW and 20 to 25 kg BW. Meanwhile, males at 20 kg BW had higher body fat content than females (P < 0.10). Males showed a higher body fat (P < 0.05) deposition rate at phase 15 to 20 kg BW (P < 0.05) than females. For pigs at 20 kg BW, the relative abundance of RuminococcaceaeUCG-005, Clostridium, Christensenellaceae_R-7_group, and Peptostreptococcaceae was significantly increased in males (P < 0.05) but that of Bifidobacterium was decreased (P < 0.05). At 25 kg BW, the relative abundance of Ruminococcaceae_NK4A214_group, Fibrobacter, RuminococcaceaeUCG-009, Ralstonia, Klebsiel, and Christensenellaceae_R-7_group in males was higher when compared with females (P < 0.05). In terms of SCFA, females exhibited higher concentrations of propionate compared to males (P < 0.05). The results of the current study indicated that sex influenced fat deposition through changes in the composition of gut microbiota and the content of SCFA, which has significant implications for the realization of precision nutrition in modern swine production.

9.
Comput Biol Med ; 175: 108511, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677173

ABSTRACT

BACKGROUND: Mitochondria are the metabolic hubs of cells, regulating energy production and antigen presentation, which are essential for activation, proliferation, and function of immune cells. Recent evidence indicates that mitochondrial antigen presentation may have an impact on diseases such as Parkinson's disease (PD) and autoimmune diseases. However, there is limited knowledge about the mechanisms that regulate the presentation of mitochondrial antigens in these diseases. METHODS: In the current study, RNA sequencing was performed on labial minor salivary gland (LSG) from 25 patients with primary Sjögren's syndrome (pSS) and 14 non-pSS aged controls. Additionally, we obtained gene expression omnibus datasets associated with PD patients from NCBI Gene Expression Omnibus (GEO) databases. Single-sample Gene Set Enrichment Analysis (ssGSEA), ESTIMATE and Spearman correlations were conducted to explore the association between mitochondrial related genes and the immune system. Furthermore, we applied weighted Gene Co-expression Network Analysis (WGCNA) to identify hub mitochondria-related genes and investigate the correlated networks in both diseases. Single cell transcriptome analysis, immunohistochemical (IHC) staining and quantitative real-time PCR (qRT-PCR) were used to verify the activation of the hub mitochondria-related pathway. Pearson correlations and the CIBERSORT algorithms were employed to further reveal the correlation between hub mitochondria-related pathways and immune infiltration. RESULTS: The transcriptome analysis revealed the presence of overlapping mitochondria-related genes and mitochondrial DNA damage in patients with pSS and PD. Reactive oxygen species (ROS), the senescence marker p53, and the inflammatory markers CD45 and Bcl-2 were found to be regionally distributed in LSGs of pSS patients. WGCNA analysis identified the STING pathway as the central mitochondria-related pathway closely associated with the immune system. Single cell analysis, IHC staining, and qRT-PCR confirmed the activation of the STING pathway. Subsequent, bioinformatic analysis revealed the proportion of infiltrating immune cells in the STING-high and STING-low groups of pSS and PD. Furthermore, the study demonstrated the association of the STING pathway with innate and adaptive immune cells, as well as functional cells, in the immune microenvironment of PD and pSS. CONCLUSION: Our study uncovered a central pathway that connects mitochondrial dysfunction and the immune microenvironment in PD and pSS, potentially offering valuable insights into therapeutic targets for these conditions.


Subject(s)
Computational Biology , Parkinson Disease , Sjogren's Syndrome , Humans , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Parkinson Disease/genetics , Parkinson Disease/immunology , Female , Mitochondria/genetics , Mitochondria/metabolism , Male , Middle Aged , Aged , Transcriptome/genetics , Gene Regulatory Networks , Genes, Mitochondrial/genetics
10.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673993

ABSTRACT

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Subject(s)
Cucumis sativus , Evolution, Molecular , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Cucumis sativus/genetics , Cucumis sativus/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , Droughts , Chromosomes, Plant/genetics , Gene Expression Profiling
11.
Stress Health ; : e3412, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651677

ABSTRACT

Infertility can be stressful for infertile couples. This study aims to examine the intra-dyadic associations between stigma, communication patterns, and infertility-related stress in couples undergoing artificial insemination by donor semen (AID). This cross-sectional study was conducted from January to April 2021. Two hundred and three couples undergoing AID were recruited from a reproductive centre in China. All of the couples completed a two-item stigma questionnaire, Communication Pattern Questionnaire, and Fertility Problem Inventory. The actor-partner interdependence mediation analysis was performed using AMOS 23.0. The analysis demonstrated significant actor-actor effects for couples undergoing AID. More specifically, higher levels of stigma among wives and husbands were associated with more negative communication patterns, thereby increasing their own infertility-related stress. Simultaneously, there was a significant partner-actor effect among infertile wives, demonstrating that the husband's stigma can affect his wife's infertility-related stress by influencing her communication patterns. Couples undergoing AID experience increased infertility-related stress when they have high levels of stigma and negative communication patterns, and husbands' stigma is correlated to wives' communication patterns. Therefore, dyadic interventions aiming to improving stigma and enhancing positive communication may be conducive to reducing infertility-related stress.

12.
J Adv Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38609051

ABSTRACT

The multicellular trichomes of cucumber (Cucumis sativus L.) serve as the primary defense barrier against external factors, whose impact extends beyond plant growth and development to include commercial characteristics of fruits. The aphid (Aphis gossypii Glover) is one of prominent pests in cucumber cultivation. However, the relationship between physical properties of trichomes and the aphid resistance at molecular level remains largely unexplored. Here, a spontaneous mutant trichome morphology (tm) was characterized by increased susceptibility towards aphid. Further observations showed the tm exhibited a higher and narrower trichome base, which was significantly distinguishable from that in wild-type (WT). We conducted map-based cloning and identified the candidate, CsTM, encoding a C-lectin receptor-like kinase. The knockout mutant demonstrated the role of CsTM in trichome morphogenesis. The presence of SNP does not regulate the relative expression of CsTM, but diminishes the CsTM abundance of membrane proteins in tm. Interestingly, CsTM was found to interact with CsTIP1;1, which encodes an aquaporin with extensive reports in plant resistance and growth development. The subsequent aphid resistance experiments revealed that both CsTM and CsTIP1;1 regulated the development of trichomes and conferred resistance against aphid by affecting cytoplasmic H2O2 contents. Transcriptome analysis revealed a significant enrichment of genes associated with pathogenesis, calcium binding and cellulose synthase. Overall, our study elucidates an unidentified mechanism that CsTM-CsTIP1;1 alters multicellular trichome morphology and enhances resistance against aphid, thus providing a wholly new perspective for trichome morphogenesis in cucumber.

13.
Front Microbiol ; 15: 1328572, 2024.
Article in English | MEDLINE | ID: mdl-38348193

ABSTRACT

Carbapenem-resistant Escherichia coli (E. coli) strains are widely distributed and spreading rapidly, creating significant challenges for clinical therapeutics. NDM-5, a novel mutant of New Delhi Metallo-ß-Lactamase-1 (NDM-1), exhibits high hydrolase activity toward carbapenems. Since the genetic backgrounds of clinically isolated carbapenem-resistant E. coli are heterogeneous, it is difficult to accurately evaluate the impact of blaNDM-5 on antibiotic resistance. Herein, E. coli BL21 was transformed with a plasmid harboring blaNDM-5, and the resultant strain was named BL21 (pET-28a-blaNDM-5). Consistent with the findings of previous studies, the introduction of exogenous blaNDM-5 resulted in markedly greater resistance of E. coli to multiple ß-lactam antibiotics. Compared with BL21 (pET-28a), BL21 (pET-28a-blaNDM-5) exhibited reduced motility but a significant increase in biofilm formation capacity. Furthermore, transcriptome sequencing was conducted to compare the transcriptional differences between BL21 (pET-28a) and BL21 (pET-28a-blaNDM-5). A total of 461 differentially expressed genes were identified, including those related to antibiotic resistance, such as genes associated with the active efflux system (yddA, mcbR and emrY), pili (csgC, csgF and fimD), biofilm formation (csgD, csgB and ecpR) and antioxidant processes (nuoG). Finally, the pGS21a plasmid harboring blaNDM-5 was transformed into E. coli Rosetta2, after which the expression of the NDM-5 protein was induced using isopropyl-ß-D-thiogalactoside (IPTG). Using glutathione-S-transferase (GST) pull-down assays, total proteins from E. coli were scanned to screen out 82 proteins that potentially interacted with NDM-5. Our findings provide new insight into the identified proteins to identify potential antibiotic targets and design novel inhibitors of carbapenem-resistant bacteria.

14.
Mar Environ Res ; 193: 106277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040551

ABSTRACT

Nanoplastics (NPs) and antibiotics (ABs) are two of the emerging marine contaminants that have drawn the most attention in recent years. Given the necessity of figuring out the effects of plastic and antibiotic contamination on marine organism life and population in the natural environment, it is essential to apply rapid and effective biological indicators to evaluate their comprehensive toxic effects. In this study, using mussel (Mytilus coruscus) as a model, we investigated the combined toxic effects of NP (80 nm polystyrene beads) and AB (Norfloxacin, NOR) at environmental-relevant concentrations on antioxidant and immune genes. In terms of the antioxidant genes, NPs significantly increased the relative expression of Cytochrome P450 3A-1 (CYP3A-1) under various concentrations of NOR conditions, but they only significantly increased the relative expression of CYP3A-2 in the high concentration (500 µg L-1 NOR) co-exposure group. In the NP-exposure group which exposed to no or low concentrations of NOR, nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated. In terms of the immune genes, interleukin-1 receptor-associated kinase (IRAK) -1 showed a significant increase in the low-concentration NOR group while a significant inhibition in the high-concentration NOR group. Due to the presence of NPs, exposure to NOR resulted in a significant increase in both IRAK-4 and heat shock protein (HSP) 70. Our findings indicate that polystyrene NPs can exacerbate the effects of NOR on the anti-oxidant and immune defense performance of mussels. This study delves into the toxic effects of NPs and ABs from a molecular perspective. Given the expected increase in environmental pollution due to NPs and ABs, future research is needed to investigate the potential synergistic effect of NPs and ABs on other organisms.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Antioxidants , Polystyrenes/toxicity , Microplastics , Norfloxacin/toxicity , Norfloxacin/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/pharmacology , Water Pollutants, Chemical/metabolism
15.
Antioxid Redox Signal ; 40(7-9): 470-491, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37476961

ABSTRACT

Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.


Subject(s)
Hearing Loss, Sensorineural , Stria Vascularis , Mice , Animals , Stria Vascularis/pathology , Stria Vascularis/physiology , Reactive Oxygen Species , Mice, Inbred C57BL , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/pathology , Hair Cells, Auditory, Outer/pathology , Hair Cells, Auditory, Outer/physiology , Acetylcysteine/pharmacology
16.
Vet Microbiol ; 288: 109927, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043448

ABSTRACT

Increased drug resistance of Gram-negative bacteria to tetracycline caused by the unreasonable overuse of tigecycline has attracted extensive attention to reveal potential mechanisms. Here, we identified a tigecycline-resistant strain called TR16, derived from Salmonella Typhimurium ATCC13311 (AT), and examined its biological characteristics. Compared with AT, the TR16 strain showed significantly higher resistance to amoxicillin but lower resistance to gentamicin. Although the growth curves of TR16 and AT were similar, TR16 showed a significantly increased capacity for biofilm formation and a notably decreased motility compared to AT. Furthermore, transcriptome sequencing and reverse transcription-quantitative PCR (RT-qPCR) were implemented to evaluate the genetic difference between AT and TR16. Whole genome sequencing (WGS) analysis was also conducted to identify single nucleotide polymorphism (SNPs) and screened out two genetic mutations (lptD and rpsJ). The acrB gene of TR16 was knocked out through CRISPR/Cas9 system to further elucidate underlying mechanisms of tigecycline resistance in Salmonella Typhimurium. The up-regulation of acrB in TR16 was verified by RNA-seq and RT-qPCR, and the lack of acrB resulted in a 16-fold reduction in tigecycline resistance in TR16. Collectively, these results implied that AcrB efflux pump plays a key role in the tigecycline resistance of Salmonella, shedding light on the potential of AcrB efflux pump as a novel target for the discovery and development of new antibiotics.


Subject(s)
Membrane Transport Proteins , Salmonella typhimurium , Animals , Tigecycline/pharmacology , Membrane Transport Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary
17.
Eur J Cardiothorac Surg ; 65(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37831900

ABSTRACT

OBJECTIVES: This study aimed to assess the effectiveness of three-dimensional printing (3DP) in patients with complex hypertrophic cardiomyopathy requiring combined transaortic and transapical septal myectomy. METHODS: We created 3DP models for 7 patients undergoing this surgery approach between June and October 2022 using silicone-like resin and conducted mock operations. The models were compared with echocardiography to identify abnormal muscle bundles and heart structures. These patients were then compared with a 1:2 matched group without 3DP, considering age, sex and additional operations. RESULTS: The models mostly presenting with midventricular obstruction showed high consistency with original computed tomography data (r = 0.978, P < 0.001). 3DP identified more abnormal muscle bundles than echocardiography, primarily between the interventricular septum and apex. Excised specimens in mock operations mirrored those in actual myectomies. While cardiopulmonary bypass time was not significantly different, a near-20-min decrease was observed in the 3DP group (135.5 ± 31.1 vs 154.4 ± 36.6 min, P = 0.054). CONCLUSIONS: While no significant differences in surgical outcomes were observed, 3DP appeared to enhance the visualization and understanding of spatial structures (average Likert scale score 4.0), potentially contributing to surgical proficiency (overall rating score 3.9). The use of 3DP may offer additional value in the preparation and execution of operations for complex hypertrophic cardiomyopathy cases.


Subject(s)
Cardiac Surgical Procedures , Cardiomyopathy, Hypertrophic , Ventricular Septum , Humans , Cardiac Surgical Procedures/methods , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/surgery , Ventricular Septum/surgery , Coronary Artery Bypass , Printing, Three-Dimensional , Treatment Outcome
18.
Neurobiol Stress ; 28: 100593, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38075025

ABSTRACT

Glucocorticoids are primary stress hormones that exert neuronal effects via both genomic and non-genomic signaling pathways. However, their rapid non-genomic effects and underlying mechanisms on neural activities remain elusive. In the present study, we investigated the rapid non-genomic effect of glucocorticoids on Kv2.2 channels in cultured HEK293 cells and acute brain slices including cortical pyramidal neurons and calyx-type synapses in the brain stem. We found that cortisol, the endogenous glucocorticoids, rapidly increased Kv2.2 currents by increasing the single-channel open probability in Kv2.2-expressing HEK293 cells through activation of the membrane-associated glucocorticoid receptor. Bovine serum albumin-conjugated dexamethasone, a membrane-impermeable agonist of the glucocorticoid receptor, could mimic the effect of cortisol on Kv2.2 channels. The cortisol-increased Kv2.2 currents were induced by activation of the extracellular signal-regulated protein kinase (ERK) 1/2 kinase, which could be inhibited by U0126, an antagonist of the ERK signaling pathway. In layer 2 cortical pyramidal neurons and the calyx of Held synapses, cortisol suppressed the action potential firing frequency during depolarization and reduced the successful rate upon high-frequency stimulation by activating Kv2.2 channels. We further examined the postsynaptic responses and found that cortisol did not affect the mEPSC and evoked EPSC, but increased the activity-dependent synaptic depression induced by a high-frequency stimulus train. In conclusion, glucocorticoids can rapidly activate Kv2.2 channels through membrane-associated glucocorticoid receptors via the ERK1/2 signaling pathway, suppress presynaptic action potential firing, and inhibit synaptic transmission and plasticity. This may be a universal mechanism of the glucocorticoid-induced non-genomic effects in the central nervous system.

19.
Front Immunol ; 14: 1292146, 2023.
Article in English | MEDLINE | ID: mdl-38022546

ABSTRACT

Background: Primary Sjögren's syndrome (pSS) is a progressive inflammatory autoimmune disease. Immune cell infiltration into glandular lobules and ducts and glandular destruction are the pathophysiological hallmarks of pSS. Macrophages are one of the most important cells involved in the induction and regulation of an inflammatory microenvironment. Although studies have reported that an abnormal tissue microenvironment alters the metabolic reprogramming and polarisation status of macrophages, the mechanisms driving macrophage infiltration and polarisation in pSS remain unclear. Methods: Immune cell subsets were characterised using the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from patients with pSS (n = 5) and healthy individuals (n = 5) in a public dataset. To evaluate macrophage infiltration and polarisation in target tissues, labial salivary gland biopsy tissues were subjected to histological staining and bulk RNA-seq (pSS samples, n = 24; non-pSS samples, n = 12). RNA-seq data were analysed for the construction of macrophage co-expression modules, enrichment of biological processes and deconvolution-based screening of immune cell types. Results: Detailed mapping of PBMCs using scRNA-seq revealed five major immune cell subsets in pSS, namely, T cells, B cells, natural killer (NK) cells, dendritic cells (DCs) and monocyte-macrophages. The monocyte-macrophage subset was large and had strong inflammatory gene signatures. This subset was found to play an important role in the generation of reactive oxygen species and communicate with other innate and adaptive immune cells. Histological staining revealed that the number of tissue-resident macrophages was high in damaged glandular tissues, with the cells persistently surrounding the tissues. Analysis of RNA-seq data using multiple algorithms demonstrated that the high abundance of pro-inflammatory M1 macrophages was accompanied by the high abundance of other infiltrating immune cells, senescence-associated secretory phenotype and evident metabolic reprogramming. Conclusion: Macrophages are among the most abundant innate immune cells in PBMCs and glandular tissues in patients with pSS. A bidirectional relationship exists between macrophage polarisation and the inflammatory microenvironment, which may serve as a therapeutic target for pSS.


Subject(s)
Salivary Glands , Sjogren's Syndrome , Humans , Transcriptome , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism
20.
Cancer Manag Res ; 15: 1323-1337, 2023.
Article in English | MEDLINE | ID: mdl-38027241

ABSTRACT

Osteosarcoma is an extremely malignant tumor, and its pathogenesis is complex and remains incompletely understood. Most cases of osteosarcoma are accompanied by symptoms of bone loss or result in pathological fractures due to weakened bones. Enhancing the survival rate of osteosarcoma patients has proven to be a long-standing challenge. Numerous studies mentioned in this paper, including in-vitro, in-vivo, and in-situ studies have consistently indicated a close association between the symptoms of bone loss associated with osteosarcoma and the presence of osteoclasts. As the sole cells capable of bone resorption, osteoclasts participate in a malignant cycle within the osteosarcoma microenvironment. These cells interact with osteoblasts and osteosarcoma cells, secreting various factors that further influence these cells, disrupting bone homeostasis, and shifting the balance toward bone resorption, thereby promoting the onset and progression of osteosarcoma. Moreover, the interaction between osteoclasts and various other cells types, such as tumor-associated macrophages, myeloid-derived suppressor cells, DCs cells, T cells, and tumor-associated fibroblasts in the osteosarcoma microenvironment plays a crucial role in disease progression. Consequently, understanding the role of osteoclasts in osteosarcoma has sparked significant interest. This review primarily examines the physiological characteristics and functional mechanisms of osteoclasts in osteosarcoma, and briefly discusses potential therapies targeting osteoclasts for osteosarcoma treatment. These studies provide fresh ideas and directions for future research on the treatment of osteosarcoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...