Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Colloids Surf B Biointerfaces ; 241: 114064, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954937

ABSTRACT

Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.


Subject(s)
Bile Ducts , Cell Differentiation , Hydrogels , Mesenchymal Stem Cells , Polyethylene Glycols , Printing, Three-Dimensional , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation/drug effects , Recombinant Proteins/pharmacology , Collagen/chemistry , Tissue Scaffolds/chemistry , Mice , Fibroblast Growth Factor 2/pharmacology , Cells, Cultured , Humans , Male
3.
Heliyon ; 10(1): e23505, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187284

ABSTRACT

Background: Epithelial cell adhesion molecule (EpCAM), a well-established marker for circulating tumor cells, plays a crucial role in the complex process of cancer metastasis. The primary objective of this investigation is to study EpCAM expression in pan-cancer and elucidate its significance in the context of kidney renal clear cell carcinoma (KIRC). Methods: Data obtained from the public database was harnessed for the comprehensive assessment of the EpCAM expression levels and prognostic and clinicopathological correlations in thirty-three types of cancer. EpCAM was validated in our own KIRC sequencing and immunohistochemical cohorts. Subsequently, an in-depth exploration was conducted to scrutinize the interrelationship between EpCAM and various facets, including immune cells, immune checkpoints, and chemotherapy drugs. We employed Cox regression analysis to identify prognostic immunomodulators associated with EpCAM, which were subsequently utilized in the development of a prognostic model. The model was validated in our own clinical cohort and public datasets, and compared with 137 published models. The role of EpCAM in KIRC was explored by biological function experiments in vitro. Results: While EpCAM exhibited pronounced overexpression across a wide spectrum of cancer types, a notable reduction was observed in KIRC tissues. As grade increased, EpCAM expression decreased. EpCAM expression decreased in patients without metastasis. EpCAM mRNA and protein levels were used as independent, favorable prognostic factors in patients with KIRC in our own cohort. The expression of EpCAM exhibited strong associations with immune-related pathways, demonstrating an inverse correlation with the majority of immune cell types. Immune checkpoint inhibitors exert better therapeutic effects on patients with low EpCAM expression. In addition, EpCAM can be used as a drug resistance indicator and guide the clinical medication of patients with KIRC. A robust model, which had good predictive accuracy and applicability, showed significant superiority over other models. Importantly, EpCAM played the dual roles of promoting proliferation and resisting metastasis in KIRC. Conclusion: In the context of KIRC, EpCAM assumes a surprising dual role, where it not only facilitates cell proliferation but also exerts resistance against the metastatic process. EpCAM serves as a standalone prognostic marker for patients with KIRC, and related models can also effectively predict prognosis. These discoveries offer novel perspectives on the functional significance of EpCAM in the context of KIRC.

4.
Sci Rep ; 13(1): 14595, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670039

ABSTRACT

SVIL is a member of the villin/gelsolin superfamily and is responsible for encoding supervillin. It has been reported to be closely related to the occurrence and development of various tumors. However, the mechanism of SVIL in bladder cancer has not been reported yet. In this research, we evaluated the relationship between SVIL expression and bladder cancer in public dataset and examined the expression of SVIL in bladder cancer cell lines, tissue microarrays and patients in our cohort. Our work determined that the expression of SVIL in bladder cancer tissue was significantly lower than that in normal tissue. However, in bladder cancer tissues, the high expression of SVIL is significantly associated with poor prognosis. This kind of duality is very novel and has great research value. The expression level of SVIL can well predict the survival time of bladder cancer patients, and is an independent risk factor of bladder cancer patients. The expression of SVIL is also closely related to the immune tumor microenvironment of bladder cancer. Our research provides a basis for personalized therapeutic targets for bladder cancer.


Subject(s)
Urinary Bladder Neoplasms , Humans , Cell Line , Gelsolin , Risk Factors , Tumor Microenvironment , Membrane Proteins , Microfilament Proteins
5.
Front Immunol ; 14: 1192428, 2023.
Article in English | MEDLINE | ID: mdl-37600786

ABSTRACT

Background: Immunotherapy resistance has become a difficult point in treating kidney renal clear cell carcinoma (KIRC) patients, mainly because of immune evasion. Currently, there is no effective signature to predict immunotherapy. Therefore, we use machine learning algorithms to construct a signature based on cytotoxic T lymphocyte evasion genes (CTLEGs) to predict the immunotherapy responses of patients, so as to screen patients effective for immunotherapy. Methods: In public data sets and our in-house cohort, we used 10 machine learning algorithms to screen the optimal model with 89 combinations under the cross-validation framework, and 101 published signatures were collected. The relationship between the CTLEG signature (CTLEGS) and clinical variables was analyzed. We analyzed the role of CTLES in other types of cancer by pan-cancer analysis. The immune cell infiltration and biological characteristics were evaluated. Moreover, the response to immunotherapy and drug sensitivity of different risk groups were investigated. The key gene closely related to the signature was identified by WGCNA. We also conducted cell functional experiments and clinical tissue validation of key gene. Results: In public data sets and our in-house cohort, the CTLEGS shows good prediction performance. The CTLEGS can be regard as an independent risk factor for KIRC. Compared with 101 published models, our signature shows considerable superiority. The high-risk group has abundant infiltration of immunosuppressive cells and high expression of T cell depletion markers, which are characterized by immunosuppressive phenotype, minimal benefit from immunotherapy, and resistance to sunitinib and sorafenib. The CTLEGS was also strongly correlated with immunity in pan-cancer. Immunohistochemistry verified that T cell depletion marker LAG3 is highly expressed in high-risk groups in the clinical in-house cohort. The key CTLEG STAT2 can promote the proliferation, migration and invasion of KIRC cell. Conclusions: CTLEGS can accurately predict the prognosis of patients and their response to immunotherapy. It can provide guidance for the precise treatment of KIRC and help clinicians identify patients who may benefit from immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , T-Lymphocytes, Cytotoxic , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Prognosis , Immunotherapy , CD3 Complex , Machine Learning , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney
6.
Cancers (Basel) ; 15(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37173953

ABSTRACT

Non-muscle-invasive bladder cancer (NMIBC) is a common tumor of the urinary system. Given its high rates of recurrence, progression, and drug resistance, NMIBC seriously affects the quality of life and limits the survival time of patients. Pirarubicin (THP) is a bladder infusion chemotherapy drug recommended by the guidelines for NMIBC. Although the widespread use of THP reduces the recurrence rate of NMIBC, 10-50% of patients still suffer from tumor recurrence, which is closely related to tumor resistance to chemotherapy drugs. This study was performed to screen the critical genes causing THP resistance in bladder cancer cell lines by using the CRISPR/dCas9-SAM system. Thus, AKR1C1 was screened. Results showed that the high expression of AKR1C1 could enhance the drug resistance of bladder cancer to THP both in vivo and in vitro. This gene could reduce the levels of 4-hydroxynonenal and reactive oxygen species (ROS) and resist THP-induced apoptosis. However, AKR1C1 did not affect the proliferation, invasion, or migration of the bladder cancer cells. Aspirin, which is an AKR1C1 inhibitor, could help reduce the drug resistance caused by AKR1C1. After receiving THP treatment, the bladder cancer cell lines could upregulate the expression of the AKR1C1 gene through the ROS/KEAP1/NRF2 pathway, leading to resistance to THP treatment. Using tempol, which is an inhibitor of ROS, could prevent the upregulation of AKR1C1 expression.

8.
Cancers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36831493

ABSTRACT

RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.

9.
Front Immunol ; 13: 1048204, 2022.
Article in English | MEDLINE | ID: mdl-36505496

ABSTRACT

Backgrounds: Polyamine metabolism (PM) is closely related to the tumor microenvironment (TME) and is involved in antitumor immunity. Clear cell renal cell carcinoma (ccRCC) not only has high immunogenicity but also has significant metabolic changes. However, the role of PM in the immune microenvironment of ccRCC remains unclear. This study aimed to reveal the prognostic value of PM-related genes (PMRGs) expression in ccRCC and their correlation with the TME. Methods: The expression levels PMRGs in different cells were characterized with single-cell sequencing analysis. The PMRG expression pattern of 777 ccRCC patients was evaluated based on PMRGs. Unsupervised clustering analysis was used in identifying PMRG expression subtypes, and Lasso regression analysis was used in developing polyamine gene expression score (PGES), which was validated in external and internal data sets. The predictive value of PGES for immunotherapy was validated in the IMvigor210 cohort. Multiple algorithms were used in analyzing the correlation between PGES and immune cells. The sensitivity of PGES to chemotherapeutic drugs was analyzed with the "pRRophetic" package. We validated the genes that develop PGES in tissue samples. Finally, weighted gene co-expression network analysis was used in identifying the key PMRGs closely related to ccRCC, and cell function experiments were carried out. Results: PMRGs were abundantly expressed on tumor cells, and PMRG expression was active in CD8+ T cells and fibroblasts. We identified three PMRG expression subtypes. Cancer and immune related pathways were active in PMRG expression cluster A, which had better prognosis. PGES exhibited excellent predictive value. The high-PGES group was characterized by high immune cell infiltration, high expression of T cell depletion markers, high tumor mutation burden and tumor immune dysfunction and exclusion, was insensitive to immunotherapy but sensitive to sunitinib, temsirolimus, and rapamycin, and had poor prognosis. Spermidine synthetase (SRM) has been identified as a key gene and is highly expressed in ccRCC at RNA and protein levels. SRM knockdown can inhibit ccRCC cell proliferation, migration, and invasion. Conclusions: We revealed the biological characteristics of PMRG expression subtypes and developed PGES to accurately predict the prognosis of patients and response to immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Polyamines , CD8-Positive T-Lymphocytes , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Gene Expression , Tumor Microenvironment/genetics
10.
Cancers (Basel) ; 14(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36497458

ABSTRACT

Bladder cancer remains one of the most common malignant tumors that threatens human health worldwide. It imposes a heavy burden on patients and society due to the high medical costs associated with its easy metastasis and recurrence. Although several treatment options for bladder cancer are available, their clinical efficacy remains unsatisfactory. Therefore, actively exploring new drugs and their mechanisms of action for the clinical treatment of bladder cancer is very important. Scabertopin is one of the major sesquiterpene lactones found in Elephantopus scaber L. Sesquiterpene lactones are thought to have fairly strong anti-cancer efficacy. However, the anticancer effect of sesquiterpenoid scabertopin on bladder cancer and its mechanism are still unclear. The aim of this study is to evaluate the antitumor activity of scabertopin in bladder cancer and its potential molecular mechanism in vitro. Our results suggest that scabertopin can induce RIP1/RIP3-dependent necroptosis in bladder cancer cells by promoting the production of mitochondrial reactive oxygen species (ROS), inhibit the expression of MMP-9 by inhibiting the FAK/PI3K/Akt signaling pathway, and ultimately inhibit the migration and invasion ability of bladder cancer cells. At the same time, we also demonstrated that the half-inhibition concentration (IC50) of scabertopin on various bladder cancer cell lines (J82, T24, RT4 and 5637) is much lower than that on human ureteral epithelial immortalized cells (SV-HUC-1). The above observations indicate that scabertopin is a potential therapeutic agent for bladder cancer that acts by inducing necroptosis and inhibiting metastasis.

11.
Front Pharmacol ; 13: 900006, 2022.
Article in English | MEDLINE | ID: mdl-36147333

ABSTRACT

Background: RNA methylation modification plays an important role in immune regulation. m7G RNA methylation is an emerging research hotspot in the RNA methylation field. However, its role in the tumor immune microenvironment of kidney renal clear cell carcinoma (KIRC) is still unclear. Methods: We analyzed the expression profiles of 29 m7G regulators in KIRC, integrated multiple datasets to identify a novel m7G regulator-mediated molecular subtype, and developed the m7G score. We evaluated the immune tumor microenvironments in m7G clusters and analyzed the correlation of the m7G score with immune cells and drug sensitivity. We tested the predictive power of the m7G score for prognosis of patients with KIRC and verified the predictive accuracy of the m7G score by using the GSE40912 and E-MTAB-1980 datasets. The genes used to develop the m7G score were verified by qRT-PCR. Finally, we experimentally analyzed the effects of WDR4 knockdown on KIRC proliferation, migration, invasion, and drug sensitivity. Results: We identified three m7G clusters. The expression of m7G regulators was higher in cluster C than in other clusters. m7G cluster C was related to immune activation, low tumor purity, good prognosis, and low m7G score. Cluster B was related to drug metabolism, high tumor purity, poor survival, and high m7G score. Cluster A was related to purine metabolism. The m7G score can well-predict the prognosis of patients with KIRC, and its prediction accuracy based on the m7G score nomogram was very high. Patients with high m7G scores were more sensitive to rapamycin, gefitinib, sunitinib, and vinblastine than other patients. Knocking down WDR4 can inhibit the proliferation, migration, and invasion of 786-0 and Caki-1 cells and increase sensitivity to sorafenib and sunitinib. Conclusion: We proposed a novel molecular subtype related to m7G modification and revealed the immune cell infiltration characteristics of different subtypes. The developed m7G score can well-predict the prognosis of patients with KIRC, and our research provides a basis for personalized treatment of patients with KIRC.

12.
Plant Cell Rep ; 41(10): 2037-2088, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35904590

ABSTRACT

KEY MESSAGE: Forty PaCRKs have been identified from sweet cherry and overexpression PaCRK1 in sweet cherry enhances its resistance to salt stress. Cysteine-rich receptor-like kinases (CRKs), a large subgroup of the receptor-like kinases, play an important role in plant development and stress response. However, knowledge about CRKs and its function against adverse environmental stresses in sweet cherry were lacking. In this study, 40 PaCRKs were identified from sweet cherry (Prunus avium) genome database. Phylogenetic analysis indicated that PaCRKs could be classified into six subgroups. Transcriptome analysis showed that the expression levels of most PaCRKs were changed under external environmental stresses. Functional study showed that PaCRK1 overexpression could enhance Arabidopsis and sweet cherry tolerance to salt stress. Moreover, biochemical analysis showed that PaCRK1 increased salt tolerance of sweet cherry by regulating the expression of antioxidation-related genes and their enzyme activities. This study provides a comprehensive understanding of PaCRKs in sweet cherry and elucidates the potential role of PaCRKs in response to various environmental stimuli.


Subject(s)
Arabidopsis , Prunus avium , Arabidopsis/genetics , Cysteine/metabolism , Phylogeny , Prunus avium/genetics , Salt Tolerance/genetics
13.
Front Pharmacol ; 13: 879317, 2022.
Article in English | MEDLINE | ID: mdl-35668934

ABSTRACT

Ferroptosis is a novel type of regulated cell death, whose unique metabolic characteristics are commonly used to evaluate the conditions of various diseases especially in tumors. Accumulating evidence supports that ferroptosis can regulate tumor development, metastasis, and therapeutic responses. Considering to the important role of chemotherapy in tumor treatment, drug resistance has become the most serious challenge. Revealing the molecular mechanism of ferroptosis is expected to solve tumor drug resistance and find new therapies to treat cancers. In this review, we discuss the relationship between ferroptosis and tumor drug resistance, summarize the abnormal ferroptosis in tissues of different cancer types and current research progress and challenges in overcoming treatment resistance, and explore the concept of targeting ferroptosis to improve tumor treatment outcomes.

14.
Front Cell Dev Biol ; 9: 699804, 2021.
Article in English | MEDLINE | ID: mdl-34869304

ABSTRACT

Background: Ferroptosis is closely related to the occurrence and development of cancer. An increasing number of studies have induced ferroptosis as a treatment strategy for cancer. However, the predictive value of ferroptosis-related lncRNAs in bladder cancer (BC) still need to be further elucidated. The purpose of this study was to construct a predictive signature based on ferroptosis-related long noncoding RNAs (lncRNAs) to predict the prognosis of BC patients. Methods: We downloaded RNA-seq data and the corresponding clinical and prognostic data from The Cancer Genome Atlas (TCGA) database and performed univariate and multivariate Cox regression analyses to obtain ferroptosis-related lncRNAs to construct a predictive signature. The Kaplan-Meier method was used to analyze the overall survival (OS) rate of the high-risk and low-risk groups. Gene set enrichment analysis (GSEA) was performed to explore the functional differences between the high- and low-risk groups. Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the predictive signature and immune status. Finally, the correlation between the predictive signature and the treatment response of BC patients was analyzed. Results: We constructed a signature composed of nine ferroptosis-related lncRNAs (AL031775.1, AL162586.1, AC034236.2, LINC01004, OCIAD1-AS1, AL136084.3, AP003352.1, Z84484.1, AC022150.2). Compared with the low-risk group, the high-risk group had a worse prognosis. The ferroptosis-related lncRNA signature could independently predict the prognosis of patients with BC. Compared with clinicopathological variables, the ferroptosis-related lncRNA signature has a higher diagnostic efficiency, and the area under the receiver operating characteristic curve was 0.707. When patients were stratified according to different clinicopathological variables, the OS of patients in the high-risk group was shorter than that of those in the low-risk group. GSEA showed that tumor- and immune-related pathways were mainly enriched in the high-risk group. ssGSEA showed that the predictive signature was significantly related to the immune status of BC patients. High-risk patients were more sensitive to anti-PD-1/L1 immunotherapy and the conventional chemotherapy drugs sunitinib, paclitaxel, cisplatin, and docetaxel. Conclusion: The predictive signature can independently predict the prognosis of BC patients, provides a basis for the mechanism of ferroptosis-related lncRNAs in BC and provides clinical treatment guidance for patients with BC.

15.
Front Cell Dev Biol ; 9: 789004, 2021.
Article in English | MEDLINE | ID: mdl-34869390

ABSTRACT

Urinary malignancies refer to a series of malignant tumors that occur in the urinary system and mainly include kidney, bladder, and prostate cancers. Although local or systemic radiotherapy and chemotherapy, immunotherapy, castration therapy and other methods have been applied to treat these diseases, their high recurrence and metastasis rate remain problems for patients. With in-depth research on the pathogenesis of urinary malignant tumors, this work suggests that regulatory cell death (RCD) plays an important role in their occurrence and development. These RCD pathways are stimulated by various internal and external environmental factors and can induce cell death or permit cell survival under the control of various signal molecules, thereby affecting tumor progression or therapeutic efficacy. Among the previously reported RCD methods, necroptosis, pyroptosis, ferroptosis, and neutrophil extracellular traps (NETs) have attracted research attention. These modes transmit death signals through signal molecules, such as cysteine-aspartic proteases (caspase) family and tumor necrosis factor-α (TNF-α) that have a wide and profound influence on tumor proliferation or death and even change the sensitivity of tumor cells to therapy. This review discussed the effects of necroptosis, pyroptosis, ferroptosis, and NETs on kidney, bladder and prostate cancer and summarized the latest research and achievements in these fields. Future directions and possibility of improving the denouement of urinary system tumors treatment by targeting RCD therapy were also explored.

16.
Plant Cell ; 33(12): 3675-3699, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34469582

ABSTRACT

Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Ascomycota/physiology , Fungal Proteins/genetics , Plant Diseases/genetics , Ubiquitin-Protein Ligases/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Ascomycota/genetics , Disease Resistance/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Ubiquitin-Protein Ligases/metabolism
17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(8): 800-808, 2021 Aug 28.
Article in English, Chinese | MEDLINE | ID: mdl-34565722

ABSTRACT

OBJECTIVES: The efficient acquisition and purification of fibroblasts as ideal seed cells are very important. For optimization of the isolation and culture of human foreskin fibroblasts (HFF), we compared the improved tissue culture method (ITCM) and the enzyme digestion method (EDM). METHODS: In ITCM, the skin tissue was digested with 0.1% Type II collagenase overnight at 4 ℃, the epidermis was separated from the dermis and digested again with 0.25% trypsin at room temperature for 15 min, and then the tissue block was attached to the culture dish. In EDM, the skin tissue was digested with 0.25% trypsin overnight at 4 ℃, the epidermis was separated from the dermis and digested with 0.1% Type II collagenase overnight at 4 ℃, the tissue block was filtered and squeezed together with the enzyme mixture, the filter was rinsed with medium containing fetal bovine serum, and the cell suspension was cultured. Both ITCM and EDM used 2 digestion enzymes, but the order, digestion time, and temperature of the 2 enzymes were different. The final inoculations of ITCM and EDM in the dishes for subsequent culture were tissue blocks and cell suspensions, respectively. In this study, HFF cells were isolated and cultured with ITCM and EDM, and the cell morphology was observed from Passage 0 to Passage 3 in the ITCM and EDM groups. The cell purity was identified by staining for vimentin, CD68, and Pan-keratin. The growth curves of Passage 3 were plotted to compare the proliferation ability of the 2 groups. Passage 3 HFF cells in the ITCM and EDM groups were irradiated with medium-wave ultraviolet (UVB) at an energy value of 120 mJ/cm2 to establish a light damage model. The experiments were grouped into an UVB group and a control group (Control) according to the presence or absence of UVB irradiation. Platelet-poor plasma (PPP) was extracted by secondary centrifugation, and the HFF cells of ITCM and EDM groups were cultured in groups using complete medium containing different concentrations (0, 2.5%, 5.0%, and 10.0%) of PPP, and the proliferation of damaged cells was detected by cell counting kit-8 after 24 h of PPP incubation. RESULTS: A large number of HFF could be observed in the ITCM group up to day 3, which was less affected by impurities; the observation of HFF morphology in the EDM group was affected by more impurities. By day 9, cells in both ITCM and EDM groups could be passaged; HFF isolated and cultured in vitro by the 2 methods showed long spindle-shaped, swirling growth. The positive rates of vimentin in the ITCM and EDM groups when HFF cells were cultured up to Passage 2 were significantly different [(97.36±0.76)% vs (99.4±0.56)%, P<0.01)]. The positive rates of CD68 were also significantly different [(70.8±0.46)% vs (78.37±0.75)%, P<0.01]. The expressions of pan-keratin in the ITCM group and the EDM group were positive and negative, respectively. There was no difference in vimentin and pan-keratin staining results between the ITCM group and the EDM group when HFF were cultured to Passage 3. The positive rates of CD68 between the ITCM group and the EDM group were significantly different [(74.73±1.37)% vs (85.27±2.63)%, P<0.001]. The proliferative capacity of HFF cells in Passage 3 was significantly higher in the EDM group than that in the ITCM group (P<0.05). After UVB (120 mJ/cm2) irradiation, HFFs procured by the 2 isolation methods showed damage. The damage repair test demonstrated that the 2.5% PPP+UVB irradiation group showed significantly higher repair competence than the other groups (all P<0.05). CONCLUSIONS: In contrast with HFFs isolated via ITCM, HFF cells isolated by EDM have a faster purification rate and a stronger proliferative capacity. Therapy with PPP can moderately repair UVB-induced damage to HFFs. The results provide a theoretical basis for clinical treatment studies in the future.


Subject(s)
Fibroblasts , Foreskin , Cells, Cultured , Culture Media , Epidermal Cells , Humans , Male , Vimentin
18.
Pathol Oncol Res ; 27: 598460, 2021.
Article in English | MEDLINE | ID: mdl-34257551

ABSTRACT

Background: Ras-related C3 botulinum toxin substrate 3 (Rac3) is overexpressed in malignancies and promotes tumor progression. However, the correlations between Rac3 expression and the clinicopathological characteristics and prognoses of patients with bladder cancer (BC) remain unclear. Methods: Data from The Cancer Genome Atlas (TCGA) were used to analyze Rac3 expression in BC and normal bladder tissues and validated using the Oncomine database, quantitative real-time PCR (qRT-PCR) and western blot. The Kaplan-Meier method was used to analyze the relationship between Rac3 expression and the prognosis of patients with BC. Cox univariate and multivariate analyses of BC patients overall survival (OS) were performed. Signaling pathways that potentially mediate Rac3 activity in BC were then analyzed by gene set enrichment analysis (GSEA). Results: The Rac3 expression in BC tissues was significantly higher than that in normal bladder tissues. Rac3 expression was significantly correlated with grade and stage. Overexpression of Rac3 was associated with a poor prognosis. GSEA showed that the cell cycle, DNA replication, p53 signaling pathway and mismatch repair were differentially enriched in the high Rac3 expression phenotype. The qRT-PCR and western blot results confirmed that the Rac3 expression in BC tissues was higher than that in normal bladder tissues. Conclusion: Rac3 is highly expressed in BC, which is related to the advanced clinicopathological variables and adverse prognosis of patients with BC. These results provide a new therapeutic target for BC.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Transcriptome , Urinary Bladder Neoplasms/pathology , rac GTP-Binding Proteins/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Signal Transduction , Survival Rate , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , rac GTP-Binding Proteins/genetics
19.
Front Cell Dev Biol ; 9: 683940, 2021.
Article in English | MEDLINE | ID: mdl-34136492

ABSTRACT

Bladder cancer is a common malignant tumor of the urinary system. Despite recent advances in treatments such as local or systemic immunotherapy, chemotherapy, and radiotherapy, the high metastasis and recurrence rates, especially in muscle-invasive bladder cancer (MIBC), have led to the evaluation of more targeted and personalized approaches. A fundamental understanding of the tumorigenesis of bladder cancer along with the development of therapeutics to target processes and pathways implicated in bladder cancer has provided new avenues for the management of this disease. Accumulating evidence supports that the tumor microenvironment (TME) can be shaped by and reciprocally act on tumor cells, which reprograms and regulates tumor development, metastasis, and therapeutic responses. A hostile TME, caused by intrinsic tumor attributes (e.g., hypoxia, oxidative stress, and nutrient deprivation) or external stressors (e.g., chemotherapy and radiation), disrupts the normal synthesis and folding process of proteins in the endoplasmic reticulum (ER), culminating in a harmful situation called ER stress (ERS). ERS is a series of adaptive changes mediated by unfolded protein response (UPR), which is interwoven into a network that can ultimately mediate cell proliferation, apoptosis, and autophagy, thereby endowing tumor cells with more aggressive behaviors. Moreover, recent studies revealed that ERS could also impede the efficacy of anti-cancer treatment including immunotherapy by manipulating the TME. In this review, we discuss the relationship among bladder cancer, ERS, and TME; summarize the current research progress and challenges in overcoming therapeutic resistance; and explore the concept of targeting ERS to improve bladder cancer treatment outcomes.

20.
Food Sci Anim Resour ; 41(1): 59-70, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33506217

ABSTRACT

A method for simultaneous detection of fipronil (F) and its metabolites fipronil desulfinyl (FD), fipronil sulfide (FS), fipronil sulfone (FSO) in chicken eggs was applied and validated. It includes single-step, cheap, effective, rugged, safe-based method (SinChERS) for sample preparation and ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) for chemical analysis. Results suggested that formic acid enhanced the recovery of 4 target residues and 1% supplementation to acetonitrile gained higher recoveries than that of 5%. SinChERS integrated extraction and clean-up steps into one, with shorter time (1.5 h) to operate and higher recoveries (97%-100%) than HLB, Envi-Carb-NH2 and quik-easy-cheap-effective-rugged-safe method (QuEChERS), and it consumed the smallest volume of extracting solvent (10 mL) as QuEChERS. Quantitative analyses using external standard method suggested the linear ranges of 4 target compounds were 1-20 µg/L with R2>0.9947. The limit of detection (S/N>3) and quantification (S/N>10) were 0.3 µg/kg and 1 µg/kg. Recoveries ranged from 89.0% to 104.4%, and the relative standard deviations (n=6) at 1, 10, and 20 µg/kg were lower than 6.03%. Thirty batches of domestic eggs (500 g each) were detected by the established SinChERS-based UHPLC-MS/MS and no target residues were detected in all samples. The method developed in this study is a rapid, sensitive, accurate and economic way for multi-residue analysis of fipronil and its metabolites in eggs.

SELECTION OF CITATIONS
SEARCH DETAIL