Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522752

ABSTRACT

INTRODUCTION: Autoimmune uveitis (AU) is a severe intraocular autoimmune disorder with a chronic disease course and a high rate of blindness. Kurarinone (KU), a major component of the traditional Chinese medicine Sophorae Flavescentis Radix, possesses a wide spectrum of activities and has been used to treat several inflammation-related diseases. OBJECTIVE: We aimed to investigate the effects of KU on AU and its modulatory mechanisms. METHODS: We used an experimental autoimmune uveitis (EAU) animal model and characterized the comprehensive immune landscape of KU-treated EAU mice using single-cell RNA sequencing (scRNA-seq). The retina and lymph nodes were analyzed. The siRNAs and selective inhibitors were used to study the signaling pathway. The effect of KU on peripheral blood mononuclear cells (PBMCs) from uveitis patients was also examined. RESULTS: We found that KU relieved chorioretinal lesions and immune cell infiltration in EAU model mice. Subsequent single-cell analysis revealed that KU downregulated the EAU-upregulated expression of inflammatory and autoimmune-related genes and suppressed pathways associated with immune cell differentiation, activation, and migration in a cell-specific manner. KU was implicated in restoring T helper 17 (Th17)/regulatory T (Treg) cell balance by alleviating inflammatory injury and elevating the expression of modulatory mediators in Tregs, while simultaneously ameliorating excessive inflammation by Th17 cells. Furthermore, Rac1 and the Id2/Pim1 axis potentiated the pathogenicity of Th17 cells during EAU, which was inhibited by KU treatment, contributing to the amelioration of EAU-induced inflammation and treatment of AU. In addition, KU suppressed inflammatory cytokine production in activated human PBMCs by inhibiting Rac1. Integration of the glucocorticoid-treated transcriptome suggests that KU has immunomodulatory effects on lymphocytes. CONCLUSION: Our study constructed a high-resolution atlas of the immunoregulatory effects of KU treatment on EAU and identified its potential therapeutic mechanisms, which hold great promise in treating autoimmune disorders.

2.
Immun Ageing ; 21(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169405

ABSTRACT

BACKGROUND: Aging is a holistic change that has a major impact on the immune system, and immunosenescence contributes to the overall progression of aging. The bone marrow is the most important hematopoietic immune organ, while the spleen, as the most important extramedullary hematopoietic immune organ, maintains homeostasis of the human hematopoietic immune system (HIS) in cooperation with the bone marrow. However, the overall changes in the HIS during aging have not been described. Here, we describe a hematopoietic immune map of the spleen and bone marrow of young and old mice using single-cell sequencing and flow cytometry techniques. RESULTS: We observed extensive, complex changes in the HIS during aging. Compared with young mice, the immune cells of aged mice showed a marked tendency toward myeloid differentiation, with the neutrophil population accounting for a significant proportion of this response. In this change, hypoxia-inducible factor 1-alpha (Hif1α) was significantly overexpressed, and this enhanced the immune efficacy and inflammatory response of neutrophils. Our research revealed that during the aging process, hematopoietic stem cells undergo significant changes in function and composition, and their polymorphism and differentiation abilities are downregulated. Moreover, we found that the highly responsive CD62L + HSCs were obviously downregulated in aging, suggesting that they may play an important role in the aging process. CONCLUSIONS: Overall, aging extensively alters the cellular composition and function of the HIS. These findings could potentially give high-dimensional insights and enable more accurate functional and developmental analyses as well as immune monitoring in HIS aging.

3.
iScience ; 26(5): 106729, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216113

ABSTRACT

Gingiva-derived mesenchymal stem cells (GMSCs) have shown astonishing efficacy in the treatment of various autoimmune diseases. However, the mechanisms underlying these immunosuppressive properties remain poorly understood. Here, we generated a lymph node single-cell transcriptomic atlas of GMSC-treated experimental autoimmune uveitis mice. GMSC exerted profound rescue effects on T cells, B cells, dendritic cells, and monocytes. GMSCs rescued the proportion of T helper 17 (Th17) cells and increased the proportion of regulatory T cells. In addition to globally altered transcriptional factors (Fosb and Jund), we observed cell type-dependent gene regulation (e.g., Il17a and Rac1 in Th17 cells), highlighting the GMSCs' cell type-dependent immunomodulatory capacity. GMSCs strongly influenced the phenotypes of Th17 cells, suppressing the formation of the highly inflammatory CCR6-CCR2+ phenotype and enhancing the production of interleukin (IL) -10 in the CCR6+CCR2+ phenotype. Integration of the glucocorticoid-treated transcriptome suggests a more specific immunosuppressive effect of GMSCs on lymphocytes.

4.
Nat Commun ; 13(1): 5866, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195600

ABSTRACT

Uveitis is a severe autoimmune disease, and a common cause of blindness; however, its individual cellular dynamics and pathogenic mechanism remain poorly understood. Herein, by performing single-cell RNA sequencing (scRNA-seq) on experimental autoimmune uveitis (EAU), we identify disease-associated alterations in cell composition and transcriptional regulation as the disease progressed, as well as a disease-related molecule, PIM1. Inhibiting PIM1 reduces the Th17 cell proportion and increases the Treg cell proportion, likely due to regulation of PIM1 to the protein kinase B (AKT)/Forkhead box O1 (FOXO1) pathway. Moreover, inhibiting PIM1 reduces Th17 cell pathogenicity and reduces plasma cell differentiation. Importantly, the upregulation of PIM1 in CD4+ T cells and plasma cells is conserved in a human uveitis, Vogt-Koyanagi-Harada disease (VKH), and inhibition of PIM1 reduces CD4+ T and B cell expansion. Collectively, a dynamic immune cellular atlas during uveitis is developed and implicate that PIM1 may be a potential therapeutic target for VKH.


Subject(s)
Autoimmune Diseases , Uveitis , Uveomeningoencephalitic Syndrome , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Th17 Cells , Uveitis/drug therapy , Uveitis/genetics , Uveomeningoencephalitic Syndrome/drug therapy , Uveomeningoencephalitic Syndrome/metabolism
5.
Biochem Pharmacol ; 202: 115116, 2022 08.
Article in English | MEDLINE | ID: mdl-35671791

ABSTRACT

Cyclosporine A (CsA) is a widely known immunosuppressive agent that is clinically important in autoimmune diseases owing to its selective suppression of T lymphocytes. Although it has long been recognized to inhibit T cell responses by blocking calcineurin, the potential targets and specific downstream mechanisms remain elusive. Herein, we built a comprehensive single-cell transcriptomic landscape of immune cells in the blank, untreated experimental autoimmune uveitis (EAU), and CsA-treated EAU mice. CsA reversed EAU-associated changes in cell type composition, genomic expression, cell trajectory, and cell-cell communication. We found that CsA reverses the proportion change of disease-related immune cells; regulates several crucial pathogenic factors (eg. IL1r1, CD48, and Bhlhe40) in T helper 17 cells (Th17), the transcription factor Bhlhe40 was also rescued in T helper 1 cells (Th1); and may differentiate Tregs into a state of enhanced immunosuppression. In addition, we revealed the rescued impact of CsA on all immune cell types, especially on plasma B cells differentiation and immunoglobulin secretion. Furthermore, comparisons with glucocorticoids showed that CsA might have a more premium rescue effect involved in attenuating the pathogenicity of autoreactive T cells. Our work provides a comprehensive single-cell transcriptional atlas of immune cells under CsA therapy, providing advanced insights into the mechanisms underlying CsA and a reference for developing new therapeutic strategies for autoimmune diseases.


Subject(s)
Autoimmune Diseases , Uveitis , Animals , Autoimmune Diseases/drug therapy , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , Disease Models, Animal , Mice , Single-Cell Analysis , Th17 Cells
6.
Commun Biol ; 4(1): 1325, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824394

ABSTRACT

Poor sleep has become an important public health issue. With loss of sleep durations, poor sleep has been linked to the increased risks for diseases. Here we employed mass cytometry and single-cell RNA sequencing to obtain a comprehensive human immune cells landscape in the context of poor sleep, which was analyzed in the context of subset composition, gene signatures, enriched pathways, transcriptional regulatory networks, and intercellular interactions. Participants subjected to staying up had increased T and plasma cell frequency, along with upregulated autoimmune-related markers and pathways in CD4+ T and B cells. Additionally, staying up reduced the differentiation and immune activity of cytotoxic cells, indicative of a predisposition to infection and tumor development. Finally, staying up influenced myeloid subsets distribution and induced inflammation development and cellular senescence. These findings could potentially give high-dimensional and advanced insights for understanding the cellular and molecular mechanisms of pathologic conditions related to poor sleep.


Subject(s)
Cellular Senescence/immunology , Inflammation/etiology , Leukocytes, Mononuclear/immunology , Sleep Deprivation/immunology , Sleep/immunology , Adult , Female , Flow Cytometry , Humans , Male , Middle Aged , Single-Cell Analysis
7.
Front Immunol ; 12: 739605, 2021.
Article in English | MEDLINE | ID: mdl-34484247

ABSTRACT

Glucocorticoids (GCs) are widely used immunosuppressive drugs for autoimmune diseases, although considerable gaps exist between current knowledge of the mechanisms of GCs and their conclusive immune-regulatory effects. Here we generated a single-cell transcriptional immune cell atlas based on prednisone-treated or untreated experimental autoimmune uveitis (EAU) mice. Immune cells were globally activated in EAU, and prednisone partially reversed this effect in terms of cell composition, gene expression, transcription factor regulation, and cell-cell communication. Prednisone exerted considerable rescue effects on T and B cells and increased the proportion of neutrophils. Besides commonly regulated transcriptional factors (Fosb, Jun, Jund), several genes were only regulated in certain cell types (e.g. Cxcr4 and Bhlhe40 in T cells), suggesting cell-type-dependent immunosuppressive properties of GC. These findings provide new insights into the mechanisms behind the properties and cell-specific effects of GCs and can potentially benefit immunoregulatory therapy development.


Subject(s)
Autoimmune Diseases/drug therapy , B-Lymphocytes/drug effects , Glucocorticoids/pharmacology , Lymph Nodes/drug effects , Neutrophils/drug effects , Prednisone/pharmacology , T-Lymphocytes/drug effects , Transcriptome , Uveitis/drug therapy , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Neutrophils/enzymology , Neutrophils/metabolism , RNA-Seq , Single-Cell Analysis , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Uveitis/genetics , Uveitis/immunology , Uveitis/metabolism
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34385315

ABSTRACT

Sex and aging influence the human immune system, resulting in disparate responses to infection, autoimmunity, and cancer. However, the impact of sex and aging on the immune system is not yet fully elucidated. Using small conditional RNA sequencing, we found that females had a lower percentage of natural killer (NK) cells and a higher percentage of plasma cells in peripheral blood compared with males. Bioinformatics revealed that young females exhibited an overrepresentation of pathways that relate to T and B cell activation. Moreover, cell-cell communication analysis revealed evidence of increased activity of the BAFF/APRIL systems in females. Notably, aging increased the percentage of monocytes and reduced the percentage of naïve T cells in the blood and the number of differentially expressed genes between the sexes. Aged males expressed higher levels of inflammatory genes. Collectively, the results suggest that females have more plasma cells in the circulation and a stronger BAFF/APRIL system, which is consistent with a stronger adaptive immune response. In contrast, males have a higher percentage of NK cells in blood and a higher expression of certain proinflammatory genes. Overall, this work expands our knowledge of sex differences in the immune system in humans.


Subject(s)
Aging/physiology , Single-Cell Analysis , Adult , Aged , Cell Communication/immunology , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/immunology , Humans , Immunosenescence , Male , Middle Aged , Sex Factors , T-Lymphocytes/metabolism , Transcriptome , Young Adult
9.
J Immunol ; 207(3): 837-848, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34282004

ABSTRACT

Dendritic cells (DCs) are critical for pathogen recognition and Ag processing/presentation. Human monocyte-derived DCs (moDCs) have been extensively used in experimental studies and DC-based immunotherapy approaches. However, the extent of human moDC and peripheral DCs heterogeneity and their interrelationship remain elusive. In this study, we performed single-cell RNA sequencing of human moDCs and blood DCs. We identified seven subtypes within moDCs: five corresponded to type 2 conventional DCs (cDC2s), and the other two were CLEC10A+CD127+ cells with no resemblance to any peripheral DC subpopulations characterized to date. Moreover, we defined five similar subtypes in human cDC2s, revealed the potential differentiation trajectory among them, and unveiled the transcriptomic differences between moDCs and cDC2s. We further studied the transcriptomic changes of each moDC subtype during maturation, demonstrating SLAMF7 and IL15RA as maturation markers and CLEC10A and SIGLEC10 as markers for immature DCs. These findings will enable more accurate functional/developmental analyses of human cDC2s and moDCs.


Subject(s)
Dendritic Cells/physiology , Monocytes/physiology , Single-Cell Analysis/methods , Adult , Cell Differentiation/genetics , Cells, Cultured , Cytokines/metabolism , Female , Gene Expression Profiling , Humans , Lectins/genetics , Lectins, C-Type/genetics , Male , Receptors, Cell Surface/genetics , Receptors, Interleukin-15/genetics , Sequence Analysis, RNA , Signaling Lymphocytic Activation Molecule Family/genetics , Th2 Cells/immunology , Young Adult
10.
Clin Transl Med ; 10(6): e200, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33135345

ABSTRACT

BACKGROUND: COVID-19 is currently a global pandemic, but the response of human immune system to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unclear. Noncoding RNAs serve as immune regulators and thus may play a critical role in disease progression. METHODS: We performed multi-transcriptome sequencing of both noncoding RNAs and mRNAs isolated from the red blood cell depleted whole blood of moderate and severe COVID-19 patients. The functions of noncoding RNAs were validated by analyses of the expression of downstream mRNAs. We further utilized the single-cell RNA-seq data of COVID-19 patients from Wilk et al. and Chua et al. to characterize noncoding RNA functions in different cell types. RESULTS: We defined four types of microRNAs with different expression tendencies that could serve as biomarkers for COVID-19 progress. We also identified miR-146a-5p, miR-21-5p, miR-142-3p, and miR-15b-5p as potential contributors to the disease pathogenesis, possibly serving as biomarkers of severe COVID-19 and as candidate therapeutic targets. In addition, the transcriptome profiles consistently suggested hyperactivation of the immune response, loss of T-cell function, and immune dysregulation in severe patients. CONCLUSIONS: Collectively, these findings provide a comprehensive view of the noncoding and coding transcriptional landscape of peripheral immune cells during COVID-19, furthering our understanding and offering novel insights into COVID-19 pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...