Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1371237, 2024.
Article in English | MEDLINE | ID: mdl-38601309

ABSTRACT

The former genus Nomocharis, which has been merged as a clade within the genus Lilium (Liliaceae), represents one of the most complicated and unclear groups included in the latter. Research on members of the Nomocharis clade has been quite limited due to the sampling difficulties caused by its selective environmental preferences. In this study, we propose a new species within this clade, Lilium liangiae, as a further bridge connecting the former genus Nomocharis with other members of the genus Lilium. We conducted morphological clustering, phylogenetic, and comparative genomics analyses of nuclear internal spacers and the newly generated complete chloroplast genome, in conjunction with previously published sequences, and performed ancestral state reconstruction to clarify the evolutionary pattern of important traits in Lilium. The clustering results of 38 morphological traits indicated that the new species is allied to Nomocharis, further increasing the morphological polymorphism in the latter. The phylogenetic results and morphological clustering both supported L. liangiae belonging to the subclade Ecristata in Nomocharis, its closest affinity being Lilium gongshanense. Inconsistencies in phylogenetic relationships were detected between nuclear and plastid datasets, possibly due to ancient hybridization and ongoing introgression. Comparative genomics revealed the conservation and similarity of their chloroplast genomes, with variations observed in the expansion and contraction of the IR regions. A/T and palindromic repeat sequences were the most abundant. Seven highly variable regions (Pi≥0.015) were identified as potential molecular markers based on the chloroplast genomes of 47 species within Lilium. Both nuclear and plastid genes exhibited very low variability within the Nomocharis clade, contrasting with their highly variable morphological appearance. The ancestral state reconstruction analysis suggests that the campanulate flower form, as in L. liangiae, arose at least three times within the genus Lilium, revealing parallel evolution in the latter. Overall, this study adds important genetic and morphological evidence for understanding the phylogenetic relationships and parallel evolution patterns of species within the genus Lilium.

2.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602507

ABSTRACT

CFAP58 is a testis-enriched gene that plays an important role in the sperm flagellogenesis of humans and mice. However, the effect of CFAP58 on bull semen quality and the underlying molecular mechanisms involved in spermatogenesis remain unknown. Here, we identified two single-nucleotide polymorphisms (rs110610797, A>G and rs133760846, G>T) and one indel (g.-1811_ g.-1810 ins147bp) in the promoter of CFAP58 that were significantly associated with semen quality of bulls, including sperm deformity rate and ejaculate volume. Moreover, by generating gene knockout mice, we found for the first time that the loss of Cfap58 not only causes severe defects in the sperm tail, but also affects the manchette structure, resulting in abnormal sperm head shaping. Cfap58 deficiency causes an increase in spermatozoa apoptosis. Further experiments confirmed that CFAP58 interacts with IFT88 and CCDC42. Moreover, it may be a transported cargo protein that plays a role in stabilizing other cargo proteins, such as CCDC42, in the intra-manchette transport/intra-flagellar transport pathway. Collectively, our findings reveal that CFAP58 is required for spermatogenesis and provide genetic markers for evaluating semen quality in cattle.


Subject(s)
Semen Analysis , Semen , Humans , Cattle , Male , Animals , Mice , Sperm Head , Spermatozoa , Mice, Knockout
3.
Vet Med Int ; 2024: 5593703, 2024.
Article in English | MEDLINE | ID: mdl-38318262

ABSTRACT

The elite bull plays an extremely important role in the genetic progression of the dairy cow population. The previous results indicated the potential positive relationship of large scrotal circumference (SC) with improved semen volume, concentration, and motility. In order to improve bull's semen quantity and quality by selection, it is necessary to estimate the genetic parameters of semen traits and their correlations with other conformation traits such as SC that could be used for an indirect selection. In this study, the genetic parameters of seven semen traits (n = 66,260) and nine conformation traits (n = 3,642) of Holstein bulls (n = 453) were estimated by using the bivariate repeatability animal model with the average information-restricted maximum likelihood (AI-REML) approach. The results showed that the estimated heritabilities of semen traits ranged from 0.06 (total number of motile sperm, TNMS) to 0.37 (percentage of abnormal sperm, PAS) and conformation traits ranged from 0.23 (pin width, PW) to 0.69 (hip height, HH). The highest genetic correlations were found between semen volume per ejaculation (SVPE), semen concentration per ejaculation (SCPE), total number of sperm (TNS), and TNMS traits that were 0.97, 0.98, 1.00, and 0.99, respectively. Phenotypic correlations between SC and SVPE, SCPE, TNS, and TNMS were 0.35, 0.35, 0.48, and 0.42, respectively. In summary, the moderate or high heritability of semen traits indicates that genetic improvement of semen quality by selection is feasible, where SC could be a useful trait for indirect selection or as correlated information to improve semen quantity and production in the practical bull breeding programs.

4.
BMC Genom Data ; 24(1): 39, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550629

ABSTRACT

OBJECTIVES: This study was performed in the frame of a more extensive study dedicated to the integrated analysis of the single-cell transcriptome and chromatin accessibility datasets of peripheral blood mononuclear cells (PBMCs) with a large-scale GWAS of 45 complex traits in Chinese Holstein cattle. Lipopolysaccharide (LPS) is a crucial mediator of chronic inflammation to modulate immune responses. PBMCs include primary T and B cells, natural killer (NK) cells, monocytes (Mono), and dendritic cells (DC). How LPS stimulates PBMCs at the single-cell level in dairy cattle remains largely unknown. DATA DESCRIPTION: We sequenced 30,756 estimated single cells and mapped 26,141 of them (96.05%) with approximately 60,075 mapped reads per cell after quality control for four whole-blood treatments (no, 2 h, 4 h, and 8 h LPS) by single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq). Finally, 7,107 (no), 9,174 (2 h), 6,741 (4 h), and 3,119 (8 h) cells were generated with ~ 15,000 total genes in the whole population. Therefore, the single-cell transcriptome and chromatin accessibility datasets in this study enable a further understanding of the cell types and functions of PBMCs and their responses to LPS stimulation in vitro.


Subject(s)
Chromatin , Transcriptome , Cattle , Animals , Transcriptome/genetics , Chromatin/genetics , Leukocytes, Mononuclear , Lipopolysaccharides/pharmacology , Base Sequence
5.
Genes (Basel) ; 14(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37372332

ABSTRACT

Rubus L. (Rosaceae, Rosoideae) contains around 700 species distributed on all continents except Antarctica, with the highest species diversity in temperate to subtropical regions of the northern hemisphere. The taxonomy of Rubus is challenging due to the frequency of polyploidy, hybridization and apomixis. Previous studies mostly sampled sparsely and used limited DNA sequence data. The evolutionary relationships between infrageneric taxa, therefore, remain to be further clarified. In the present study, genotyping by sequencing (GBS) reduced-representation genome sequencing data from 186 accessions representing 65 species, 1 subspecies and 17 varieties of Rubus, with emphasis on diploid species, were used to infer a phylogeny using maximum likelihood and maximum parsimony methods. The major results were as follows: (1) we confirmed or reconfirmed the polyphyly or paraphyly of some traditionally circumscribed subgenera, sections and subsections; (2) 19 well-supported clades, which differed from one another on molecular, morphological and geographical grounds, were identified for the species sampled; (3) characteristics such as plants with dense bristles or not, leaves leathery or papyraceous, number of carpels, instead of inflorescences paniculate or not, aggregate fruits and leaves abaxially tomentose or not, may be of some use in classifying taxa whose drupelets are united into a thimble-shaped aggregate fruit that falls in its entirety from the dry receptacle; and (4) a preliminary classification scheme of diploid species of Rubus is proposed based on our results combined with those from previous phylogenetic analyses.


Subject(s)
Rubus , Phylogeny , Diploidy , Biological Evolution , Polyploidy
6.
Epigenetics ; 18(1): 2183339, 2023 12.
Article in English | MEDLINE | ID: mdl-36866611

ABSTRACT

DNA methylation and gene alternative splicing drive spermatogenesis. In screening DNA methylation markers and transcripts related to sperm motility, semen from three pairs of full-sibling Holstein bulls with high and low motility was subjected to reduced representation bisulphite sequencing. A total of 948 DMRs were found in 874 genes (gDMRs). Approximately 89% of gDMR-related genes harboured alternative splicing events, including SMAD2, KIF17, and PBRM1. One DMR in exon 29 of PBRM1 with the highest 5mC ratio was found, and hypermethylation in this region was related to bull sperm motility. Furthermore, alternative splicing events at exon 29 of PBRM1 were found in bull testis, including PBRM1-complete, PBRM1-SV1 (exon 28 deletion), and PBRM1-SV2 (exons 28-29 deletion). PBRM1-SV2 exhibited significantly higher expression in adult bull testes than in newborn bull testes. In addition, PBRM1 was localized to the redundant nuclear membrane of bull sperm, which might be related to sperm motility caused by sperm tail breakage. Therefore, the hypermethylation of exon 29 may be associated with the production of PBRM1-SV2 in spermatogenesis. These findings indicated that DNA methylation alteration at specific loci could regulate gene splicing and expression and synergistically alter sperm structure and motility.


Subject(s)
DNA Methylation , Semen , Male , Cattle , Animals , Alternative Splicing , Sperm Motility/genetics , Spermatozoa
7.
Molecules ; 28(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677723

ABSTRACT

Genetic improvement of milk fatty acid content traits in dairy cattle is of great significance. However, chromatography-based methods to measure milk fatty acid content have several disadvantages. Thus, quick and accurate predictions of various milk fatty acid contents based on the mid-infrared spectrum (MIRS) from dairy herd improvement (DHI) data are essential and meaningful to expand the amount of phenotypic data available. In this study, 24 kinds of milk fatty acid concentrations were measured from the milk samples of 336 Holstein cows in Shandong Province, China, using the gas chromatography (GC) technique, which simultaneously produced MIRS values for the prediction of fatty acids. After quantification by the GC technique, milk fatty acid contents expressed as g/100 g of milk (milk-basis) and g/100 g of fat (fat-basis) were processed by five spectral pre-processing algorithms: first-order derivative (DER1), second-order derivative (DER2), multiple scattering correction (MSC), standard normal transform (SNV), and Savitzky-Golsy convolution smoothing (SG), and four regression models: random forest regression (RFR), partial least square regression (PLSR), least absolute shrinkage and selection operator regression (LassoR), and ridge regression (RidgeR). Two ranges of wavebands (4000~400 cm-1 and 3017~2823 cm-1/1805~1734 cm-1) were also used in the above analysis. The prediction accuracy was evaluated using a 10-fold cross validation procedure, with the ratio of the training set and the test set as 3:1, where the determination coefficient (R2) and residual predictive deviation (RPD) were used for evaluations. The results showed that 17 out of 31 milk fatty acids were accurately predicted using MIRS, with RPD values higher than 2 and R2 values higher than 0.75. In addition, 16 out of 31 fatty acids were accurately predicted by RFR, indicating that the ensemble learning model potentially resulted in a higher prediction accuracy. Meanwhile, DER1, DER2 and SG pre-processing algorithms led to high prediction accuracy for most fatty acids. In summary, these results imply that the application of MIRS to predict the fatty acid contents of milk is feasible.


Subject(s)
Lactation , Milk , Animals , Female , Cattle , Milk/chemistry , Fatty Acids/analysis , Spectrophotometry, Infrared/methods , Least-Squares Analysis
8.
Cell Tissue Bank ; 24(1): 221-230, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35896934

ABSTRACT

Feeder cells play important roles in In-vitro culture of stem cells. However, the preparation protocol of feeder cells produced by bovine embryonic fibroblast cells (bEFs) is still lack. In this study, the preparation of bEF-feeder by Mitomycin C was optimized with different concentrations and treatment time. The cell viability of bEFs was detected by CCK8 and 5-Ethynyl-2'-deoxyuridine. The growth of bESCs in each bEFs-feeder group was assessed by alkaline phosphatase staining and CCK8. Quantitative real time PCR was used to detect the mRNA expression of pluripotency-related genes of bESCs. Results showed that the proliferation of bEFs was significantly repressed while bEFs were treated with 14 ug/mL or 16 ug/mL Mitomycin C for 3 h, and the cell viability within 2-4 days after treatment was consistent with the 1st day. The numbers of bESCs clones in bEF-feeder treated with 14 µg/mL Mitomycin C for 3 h or 16 µg/mL Mitomycin C for 3 h were significantly higher than that in bEF-feeder treated with 8 µg/mL Mitomycin C for 8 h or bEFs treated with 6 µg/mL Mitomycin C for 9 h. The mRNA expression of pluripotency-related genes in bESCs cultured by bEF-feeder were higher than the MEF-feeder, the clone morphology of bESCs cultured in bEF-feeder was rounder and sharper than the MEF-feeder. In conclusion, the bEF-feeder prepared with 14 µg/mL Mitomycin C for 3 h or 16 µg/mL Mitomycin C for 3 h could effectively maintains the growth of bESCs, and bEF-feeder is more suitable for bESCs culture than the MEF-feeder.


Subject(s)
Cell Culture Techniques , Feeder Cells , Fibroblasts , Mitomycin , Pluripotent Stem Cells , Cattle , Cell Survival/drug effects , Mitomycin/pharmacology , Pluripotent Stem Cells/cytology , Animals
9.
Genes (Basel) ; 13(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36292673

ABSTRACT

MicroRNAs (miRNAs) play key roles in sperm as the regulatory factors involved in fertility and subsequent early embryonic development. Bta-miR-6531 is specifically a highly enriched miRNA in low-motility sperms in previous study. To investigate the mechanism of bta-miR-6531, 508 shared target genes of bta-miR-6531 were predicted using two miRNA target databases (TargetScan7 and miRWalk). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the calcium and cAMP signaling pathways were the most enriched of the target genes. A dual-luciferase assay indicated that bta-miR-6531 targeted ATP2A2 mRNA by binding to the coding sequence region. In bovine Leydig cells, bta-miR-6531 overexpression affected the intracellular calcium concentration by restraining ATP2A2 expression. Moreover, we observed high calcium concentrations and high ATP2A2 protein levels in high-motility sperm compared with those in low-motility sperms. Furthermore, high-linkage single-nucleotide polymorphisms (SNPs) of the pre-bta-miR-6531 sequence were identified that related to sperm traits. Genotype TCTC of bta-miR-6531 showed high sperm motility and density and low deformity rate in Holstein bulls. However, the mutation in pre-miR-6531 did not significantly affect mature bta-miR-6531 expression in the sperm or cell models. Our results demonstrate that bta-miR-6531 might involve in sperm motility regulation by targeting ATP2A2 of the calcium signaling pathway in bovine spermatozoa.


Subject(s)
Calcium , MicroRNAs , Cattle , Male , Animals , Sperm Motility/genetics , Leydig Cells/metabolism , Semen/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger
10.
BMC Genomics ; 23(1): 511, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836113

ABSTRACT

BACKGROUND: Bulbus Fritillariae Cirrhosae (BFC) is an endangered high-altitude medicine and food homology plant with anti-tumor, anti-asthmatic, and antitussive activities as it contains a variety of active ingredients, especially steroidal alkaloids. Bulbus Fritillariae Thunbergia (BFT) is another species of Fritillaria that grows at lower altitude areas. Production of plant-derived active ingredients through a synthetic biology strategy is one of the current hot topics in biological research, which requires a complete understanding of the related molecular pathways. Our knowledge of the steroidal alkaloid biosynthesis in Fritillaria species is still very limited. RESULTS: To promote our understanding of these pathways, we performed non-target metabolomics and transcriptome analysis of BFC and BFT. Metabolomics analysis identified 1288 metabolites in BFC and BFT in total. Steroidal alkaloids, including the proposed active ingredients of Fritillaria species peimine, peimisine, peiminine, etc., were the most abundant alkaloids detected. Our metabolomics data also showed that the contents of the majority of the steroidal alkaloids in BFC were higher than in BFT. Further, our comparative transcriptome analyses between BFC and BFT identified differentially expressed gene sets among these species, which are potentially involved in the alkaloids biosynthesis of BFC. CONCLUSION: These findings promote our understanding of the mechanism of steroidal alkaloids biosynthesis in Fritillaria species.


Subject(s)
Alkaloids , Fritillaria , Fritillaria/genetics , Gene Expression Profiling , Metabolome , Plant Roots
11.
BMC Genomics ; 23(1): 338, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35501711

ABSTRACT

BACKGROUND: Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. RESULTS: We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. CONCLUSION: This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution.


Subject(s)
Chromatin , Leukocytes, Mononuclear , Lipopolysaccharides , Transcriptome , Animals , Cattle/immunology , Chromatin/genetics , Chromatin/metabolism , Female , Immunity, Innate , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Lymphocytes/metabolism , NF-kappa B/metabolism
12.
Mol Ecol Resour ; 22(4): 1582-1595, 2022 May.
Article in English | MEDLINE | ID: mdl-34837470

ABSTRACT

The Hengduan Mountains region is an important hotspot of alpine plant diversity and endemism. Acanthochlamys bracteata is a species of a threatened monotypic genus endemic to the Hengduan Mountains. In this study, we present a high-quality, chromosome-level reference genome for A. bracteata, constructed using long reads, short reads and Hi-C technology. We characterized its genetic diversity, population structure, demographic history and gene flow by resequencing individuals collected across its distribution. Comparative genomics analyses based on sequence information from single-copy orthologous genes revealed that A. bracteata and Dioscorea rotundata diverged ~104.5 million years ago. Whole-genome resequencing based on population genetic analysis revealed that the division of the 14 populations into 10 distinct clusters reflected geographical divergence, and three separate high levels of gene flow occurred sequentially between isolated populations of the Hengduan Mountains, a finding which is consistent with the turnover between ice ages and interglacial periods. Our findings indicate that Quaternary climatic changes played an important role in shaping the genetic structure and demographic trajectories of A. bracteata, and provide critical insights into the genetic status and evolutionary history of this poorly understood species, and possibly other alpine plants with a similar distribution. This study demonstrates the usefulness of population genomics for evaluating the effects of past climatic changes and identifying conservation units for the conservation and management of threatened species. Our high-quality genome represents a valuable resource for future studies of the underlying molecular mechanisms of adaptive evolution and provides insight for further comparative genomic analysis with other Velloziaceae species.


Subject(s)
Endangered Species , Genome , Animals , Biodiversity , Chromosomes , Humans , Phylogeny
13.
Microsc Res Tech ; 84(10): 2337-2350, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33908115

ABSTRACT

In this research, the fruits and seeds' surface morphological features and their taxonomic significance were determined. Additionally, useful traits for delimitation of taxa of Rosa sericea complex were studied. In this research, three taxa of the complex R. sericea, R. omeiensis, and R. sikangensis have been studied. A total of 41 populations and 130 specimens of seeds, and 35 populations and 168 specimens of fruits from 10 different geographical regions of southwest China have been examined. The surface micro-morphological characters of the seeds have been studied through scanning electron microscopy to distinguish important characteristics of the complex taxa. Forty-four different qualitative and quantitative characteristics were observed. Principal component analysis was used to simplify and elucidate the relationship between the studied characters of different population based on the morphology of fruits and seeds' features. Moreover, the numerical taxonomic characters and their variation with elevation have been studied in these species. The most interesting characters observed on the surface of the seeds were stomata, and trichomes, for which density was more at the dorsal and ventral parts, while rarely present on the lateral parts. The fruits and seeds' surface morphology of the studied species was complicated and some variation in the characters, that is, persistent calyx shape, the shape of fruits and seeds, stomata shape, and trichomes size were found significant for delimitation of taxa in the complex. The purpose of this study is to identify the taxa of R. sericea complex based on fruits and seeds' morphological characters, and identification keys.


Subject(s)
Rosa , Rosaceae , Fruit , Humans , Seeds , Trichomes
14.
Genomics ; 113(3): 1491-1503, 2021 05.
Article in English | MEDLINE | ID: mdl-33771637

ABSTRACT

Domestication and subsequent selection of cattle to form breeds and biological types that can adapt to different environments partitioned ancestral genetic diversity into distinct modern lineages. Genome-wide selection particularly for adaptation to extreme environments left detectable signatures genome-wide. We used high-density genotype data for 42 cattle breeds and identified the influence of Bos grunniens and Bos javanicus on the formation of Chinese indicine breeds that led to their divergence from India-origin zebu. We also found evidence for introgression, admixture, and migration in most of the Chinese breeds. Selection signature analyses between high-altitude (≥1800 m) and low-altitude adapted breeds (<1500 m) revealed candidate genes (ACSS2, ALDOC, EPAS1, EGLN1, NUCB2) and pathways that are putatively involved in hypoxia adaptation. Immunohistochemical, real-time PCR and CRISPR/cas9 ACSS2-knockout analyses suggest that the up-regulation of ACSS2 expression in the liver promotes the metabolic adaptation of cells to hypoxia via the hypoxia-inducible factor pathway. High altitude adaptation involved the introgression of alleles from high-altitude adapted yaks into Chinese Bos taurus taurus prior to their formation into recognized breeds and followed by selection. In addition to selection, adaptation to high altitude environments has been facilitated by admixture and introgression with locally adapted cattle populations.


Subject(s)
Altitude , Polymorphism, Single Nucleotide , Acclimatization/genetics , Alleles , Animals , Cattle/genetics , Genotype , Selection, Genetic
15.
Front Plant Sci ; 11: 576407, 2020.
Article in English | MEDLINE | ID: mdl-33365039

ABSTRACT

We studied hybrid interactions of Lilium meleagrinum, Lilium gongshanense, and Lilium saluenense using an integrative approach combining population genetics, fieldwork, and phenological research. These three species occur along an elevational gradient, with L. meleagrinum occurring at lower elevations, L. saluenense at higher elevations, and L. gongshanense between them. The species show strong morphological differentiation despite there being no clear environmental barriers to gene flow among them. Lilium gongshanense is likely to have a hybrid origin based on our prior work, but its progenitors remain uncertain. We sought to determine whether gene flow occurs among these three parapatric species, and, if so, whether L. gongshanense is a hybrid of L. meleagrinum and/or L. saluenense. We analyzed data from multiple chloroplast genes and spacers, nuclear internal transcribed spacer (ITS), and 18 nuclear Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR) microsatellites for accessions of the three species representing dense population-level sampling. We also inferred phenology by examining species in the field and using herbarium specimens. We found that there are only two types of chloroplast genomes shared among the three species and that L. gongshanense forms two distinct groups with closest links to other species of Lilium based on ITS. Taken together, L. gongshanense is unlikely to be a hybrid species resulting from a cross between L. meleagrinum and L. saluenense, but gene flow is occurring among the three species. The gene flow is likely to be rare according to evidence from all molecular datasets, and this is corroborated by detection of only one putative hybrid individual in the field and asynchronous phenology. We suspect that the rarity of hybridization events among the species facilitates their continued genetic separation.

16.
Mitochondrial DNA B Resour ; 5(1): 441-442, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-33366592

ABSTRACT

The first chloroplast genome of the fern genus Polystichum Roth (Dryopteridaceae) is reported here. Polystichum deltodon (Baker) Diels belongs to subgenus Haplopolystichum (Polystichum; Dryopteridaceae), many species of which are endangered or critically endangered species. The complete chloroplast genome of P. deltodon was determined for the first time in this work, which is revealed a circle quadripartite structure of 154,143 bp in length comprising a large single-copy region (LSC) of 86,990 bp, a small single-copy region (SSC) of 21,593 bp and a pair of inverted regions (IRs) of 22,780 bp, respectively. Based on the reported chloroplast genomes of Dryopteridaceae, phylogenetic analyses suggested that P. deltodon was located nearly to the genus Crytomium, which is in agreement with previous systematic research.

17.
Front Genet ; 11: 586155, 2020.
Article in English | MEDLINE | ID: mdl-33250923

ABSTRACT

The random regression test-day model has become the most commonly adopted model for routine genetic evaluations in dairy populations, which allows accurately accounting for genetic and environmental effects over lactation. The objective of this study was to explore appropriate random regression test-day models for genetic evaluation of milk yield in a Holstein population with a relatively small size, which is the common situation in regional or independent breeding companies to preform genetic evaluation. Data included 419,567 test-day records from 54,417 cows from the first lactation. Variance components and breeding values were estimated using a random regression test-day model with different orders (from first to fifth) of Legendre polynomials (LP) and accounted for homogeneous or heterogeneous residual variance across the lactation. Models were compared based on Akaike information criterion (AIC), Bayesian information criterion (BIC), and predictive ability. In general, models with a higher order of LP showed better goodness of fit based on AIC and BIC values. However, models with third, fourth, and fifth order of LP led to similar estimates of genetic parameters and predictive ability. Models with assumption of heterogeneous residual variances achieved better goodness of fit but yielded similar predictive ability compared with those with assumption of homogeneous residual variances. Therefore, a random regression model with third order of LP is suggested to be an appropriate model for genetic evaluation of milk yield in local Chinese Holstein populations.

18.
Front Plant Sci ; 10: 321, 2019.
Article in English | MEDLINE | ID: mdl-30936888

ABSTRACT

Discerning species boundaries among closely related taxa is fundamental to studying evolution and biodiversity. However, species boundaries can be difficult to access in plants because ongoing divergence and speciation may leave an evolutionary footprint similar to introgression, which occurs frequently among species and genera. In this study, we sought to determine species boundaries between two closely related alpine shrubs, Rosa sericea and Rosa omeiensis, using population genetics, environmental data and ecological niche modeling, and morphological traits. We analyzed populations of R. sericea and R. omeiensis using genetic markers comprising a fragment of the single-copy nuclear gene, LEAFY, micro-satellites (EST-SSR), and plastid DNA sequences. The DNA sequence data suggested clusters of populations consistent with geography but not with previously proposed species boundaries based on morphology. Nevertheless, we found that the ecological niches of the previously proposed species only partially overlap. Thus, we suspect that these species are in the process of parapatric speciation; that is, differentiating along an ecological gradient, so that they exhibit differing morphology. Morphology has previously been the basis of recognizing the species R. sericea and R. omeiensis, which are the most widely distributed species within a broader R. sericea complex that includes several other narrow endemics. Here, we recognize R. sericea and R. omeiensis as independent species based on morphological and ecological data under the unified species concept, which emphasizes that these data types are of equal value to DNA for determining species boundaries and refining taxonomic treatments. While the DNA data did not delimit species within the R. sericea complex, we expect to develop and utilize new, robust DNA tools for understanding speciation within this group in future studies.

19.
Am J Bot ; 106(5): 622-632, 2019 05.
Article in English | MEDLINE | ID: mdl-31022316

ABSTRACT

PREMISE: Evolutionary transitions among floral morphologies, many of which provide evidence for adaptation to novel pollinators, are common. Some trumpet-shaped flowers are among the largest flowers in angiosperms, occurring in different lineages. Our goal was to investigate the role of pollinators in the evolution of these flowers using Lilium. METHODS: We investigated floral traits and pollinators of L. primulinum var. ochraceum and L. brownii var. viridulum and reviewed reports of visitors to huge trumpet-shaped flowers. Using a published phylogeny of Lilium, we reconstructed ancestral floral morphological states in Lilium to elucidate the origins of trumpet-shaped lilies. RESULTS: Both lilies are largely self-incompatible and show floral syndromes indicative of hawkmoth pollination. The short trumpet-shaped lily can be pollinated by short-tongued (<40 mm) but not long-tongued hawkmoths (>65 mm), while the huge trumpet-shaped lily can be pollinated by both. A literature review including 22 species of trumpet-shaped flowers suggests that their pollinator guilds commonly include both short- and long-tongued moths. A phylogenetic reconstruction indicates that trumpet-shaped lilies possibly have multiple origins from tepal-reflexed ancestors, at least six of which have evolved huge flowers (>50 mm). CONCLUSIONS: Adaptation to short-tongued hawkmoths may have initiated the evolution of trumpet-shaped lilies. Huge trumpet-shaped lilies may have evolved as a response to selection by long-tongued hawkmoths, without excluding the short-tongued ones. This evolutionary pathway leads to a functionally more generalized pollination system instead of an increasingly specialized one and is not necessarily associated with pollinator shifts.


Subject(s)
Flowers/anatomy & histology , Lilium/anatomy & histology , Lilium/physiology , Pollination , Animals , Food Chain , Moths/physiology , Phylogeny , Species Specificity
20.
Mitochondrial DNA B Resour ; 4(2): 3596-3597, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-33366101

ABSTRACT

Angelica sylvestris L. is the type species of the genus Angelica L., which was considered as one of the largest and most complicated groups in the family Apiaceae. The complete chloroplast genome of A. sylvestris was determined for the first time, and revealed a circle quadripartite structure of 146,910 bp in length comprising a large single-copy region (LSC) of 93,503 bp, a small single-copy region (SSC) of 17,833 bp and a pair of inverted regions (IRs) of 17,787 bp each. Based on the reported chloroplast genomes of Apioideae, phylogenetic analyses suggested that A. sylvestris was located in the Angelica group together with most Angelica species, which coincided with previous molecular systematic research.

SELECTION OF CITATIONS
SEARCH DETAIL
...