Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
World J Oncol ; 15(2): 169-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545484

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer resistant to current therapies, including oxaliplatin (Oxa). Growing evidence supports the ability of cancers to harness sphingolipid metabolism for survival. Sphingosine-1-phosphate (S1P) is an anti-apoptotic, pro-survival mediator that can influence cellular functions such as endoplasmic reticulum (ER) stress. We hypothesize that PDAC drives dysregulated sphingolipid metabolism and that S1P inhibition can enhance ER stress to improve therapeutic response to Oxa in PDAC. Methods: RNA sequencing data of sphingolipid mediators from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) datasets were analyzed. Murine and human PDAC cell lines were treated with small interfering RNA (siRNA) against sphingosine kinase-2 (SPHK2) or ABC294640 (ABC) and incubated with combinations of vehicle control or Oxa. In an orthotopic syngeneic KPC PDAC model, tumors were treated with either vehicle control, Oxa, ABC, or combination therapy. Results: RNA sequencing analysis revealed multiple significantly differentially expressed sphingolipid mediators (P < 0.05). In vitro, both siRNA knockdown of SPHK2 and ABC sensitized cells to Oxa therapy (P < 0.05), and induced eukaryotic initiation factor 2α (eIF2α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) phosphorylation, hallmarks of ER stress. In vitro therapy also increased extracellular high mobility group box 1 (HMGB1) release (P < 0.05), necessary for immunogenic cell death (ICD). In vivo combination therapy increased apoptotic markers as well as the intensity of HMGB1 staining compared to control (P < 0.05). Conclusions: Our evidence suggests that sphingolipid metabolism is dysregulated in PDAC. Furthermore, S1P inhibition can sensitize PDAC to Oxa therapy through increasing ER stress and can potentiate ICD induction. This highlights a potential therapeutic target for chemosensitizing PDAC as well as an adjunct for future chemoimmunotherapy strategies.

2.
Front Immunol ; 15: 1324093, 2024.
Article in English | MEDLINE | ID: mdl-38361928

ABSTRACT

Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Tertiary Lymphoid Structures , Humans , Pancreatic Neoplasms/pathology , Medical Oncology , Tumor Microenvironment
3.
Front Oncol ; 13: 1274783, 2023.
Article in English | MEDLINE | ID: mdl-38074633

ABSTRACT

Introduction: Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with limited response to both chemotherapy and immunotherapy. Pre-treatment tumor features within the tumor immune microenvironment (TiME) may influence treatment response. We hypothesized that the pre-treatment TiME composition differs between metastatic and primary lesions and would be associated with response to modified FOLFIRINOX (mFFX) or gemcitabine-based (Gem-based) therapy. Methods: Using RNAseq data from a cohort of treatment-naïve, advanced PDAC patients in the COMPASS trial, differential gene expression analysis of key immunomodulatory genes in were analyzed based on multiple parameters including tumor site, response to mFFX, and response to Gem-based treatment. The relative proportions of immune cell infiltration were defined using CIBERSORTx and Dirichlet regression. Results: 145 samples were included in the analysis; 83 received mFFX, 62 received Gem-based therapy. Metastatic liver samples had both increased macrophage (1.2 times more, p < 0.05) and increased eosinophil infiltration (1.4 times more, p < 0.05) compared to primary lesion samples. Further analysis of the specific macrophage phenotypes revealed an increased M2 macrophage fraction in the liver samples. The pre-treatment CD8 T-cell, dendritic cell, and neutrophil infiltration of metastatic samples were associated with therapy response to mFFX (p < 0.05), while mast cell infiltration was associated with response to Gem-based therapy (p < 0.05). Multiple immunoinhibitory genes such as ADORA2A, CSF1R, KDR/VEGFR2, LAG3, PDCD1LG2, and TGFB1 and immunostimulatory genes including C10orf54, CXCL12, and TNFSF14/LIGHT were significantly associated with worse survival in patients who received mFFX (p = 0.01). There were no immunomodulatory genes associated with survival in the Gem-based cohort. Discussion: Our evidence implies that essential differences in the PDAC TiME exist between primary and metastatic tumors and an inflamed pretreatment TiME is associated with mFFX response. Defining components of the PDAC TiME that influence therapy response will provide opportunities for targeted therapeutic strategies that may need to be accounted for in designing personalized therapy to improve outcomes.

4.
Int J Cancer ; 131(6): E862-71, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22539036

ABSTRACT

Aldo-keto reductase 1B10 (AKR1B10) is a secretory protein that is upregulated with tumorigenic transformation of human mammary epithelial cells. This study demonstrated that AKR1B10 was overexpressed in 20 (71.4%) of 28 ductal carcinomas in situ, 184 (83.6%) of 220 infiltrating carcinomas and 28 (87.5%) of 32 recurrent tumors. AKR1B10 expression in breast cancer was correlated positively with tumor size (p = 0.0012) and lymph node metastasis (p = 0.0123) but inversely with disease-related survival (p = 0.0120). Univariate (p = 0.0077) and multivariate (p = 0.0192) analyses both suggested that AKR1B10, alone or together with tumor size and node status, is a significant prognostic factor for breast cancer. Silencing of AKR1B10 in BT-20 human breast cancer cells inhibited cell growth in culture and tumorigenesis in female nude mice. Importantly, AKR1B10 in the serum of breast cancer patients was significantly increased to 15.18 ± 9.08 ng/ml [n = 50; 95% confidence interval (CI), 12.60-17.76], with a high level up to 58.4 ng/ml, compared to 3.34 ± 2.27 ng/ml in healthy donors (n = 60; 95% CI, 2.78-3.90). In these patients, AKR1B10 levels in serum were correlated with its expression in tumors (r = 0.8066; p < 0.0001). Together our data suggests that AKR1B10 is overexpressed in breast cancer and may be a novel prognostic factor and serum marker for this deadly disease.


Subject(s)
Aldehyde Reductase/physiology , Biomarkers, Tumor/blood , Breast Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/blood , Aldo-Keto Reductases , Animals , Breast Neoplasms/mortality , Cell Line, Tumor , Female , Humans , Lymphatic Metastasis , Mice , Mice, Nude , Middle Aged , Tissue Array Analysis
5.
Biochem J ; 438(1): 71-80, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21585341

ABSTRACT

AKR1B10 (aldo-keto reductase family 1, member B10) protein is primarily expressed in normal human small intestine and colon, but overexpressed in several types of human cancers and considered as a tumour marker. In the present study, we found that AKR1B10 protein is secreted from normal intestinal epithelium and cultured cancer cells, as detected by a newly developed sandwich ELISA and Western blotting. The secretion of AKR1B10 was not affected by the protein-synthesis inhibitor cycloheximide and the classical protein-secretion pathway inhibitor brefeldin A, but was stimulated by temperature, ATP, Ca(2+) and the Ca(2+) carrier ionomycin, lysosomotropic NH(4)Cl, the G-protein activator GTPγS and the G-protein coupling receptor N-formylmethionyl-leucyl-phenylalanine. The ADP-ribosylation factor inhibitor 2-(4-fluorobenzoylamino)-benzoic acid methyl ester and the phospholipase C inhibitor U73122 inhibited the secretion of AKR1B10. In cultured cells, AKR1B10 was present in lysosomes and was secreted with cathepsin D, a lysosomal marker. In the intestine, AKR1B10 was specifically expressed in mature epithelial cells and secreted into the lumen at 188.6-535.7 ng/ml of ileal fluids (mean=298.1 ng/ml, n=11). Taken together, our results demonstrate that AKR1B10 is a new secretory protein belonging to a lysosome-mediated non-classical protein-secretion pathway and is a potential serum marker.


Subject(s)
Adenocarcinoma/metabolism , Aldehyde Reductase/metabolism , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/metabolism , Colorectal Neoplasms/metabolism , Lysosomes/metabolism , Adenosine Triphosphate/pharmacology , Aldo-Keto Reductases , Blotting, Western , Calcium/pharmacology , Culture Media/metabolism , Enzyme-Linked Immunosorbent Assay , Exocytosis , Female , Humans , Immunoenzyme Techniques , Intestines/cytology , Intestines/enzymology , Kidney/cytology , Kidney/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...