Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 27(7): 3302-3313, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37067963

ABSTRACT

In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.


Subject(s)
Deep Learning , Heart Ventricles , Humans , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging/methods , Algorithms , Heart Atria
2.
IEEE Trans Med Imaging ; 42(7): 2118-2129, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36350867

ABSTRACT

Large training datasets are important for deep learning-based methods. For medical image segmentation, it could be however difficult to obtain large number of labeled training images solely from one center. Distributed learning, such as swarm learning, has the potential to use multi-center data without breaching data privacy. However, data distributions across centers can vary a lot due to the diverse imaging protocols and vendors (known as feature skew). Also, the regions of interest to be segmented could be different, leading to inhomogeneous label distributions (referred to as label skew). With such non-independently and identically distributed (Non-IID) data, the distributed learning could result in degraded models. In this work, we propose a novel swarm learning approach, which assembles local knowledge from each center while at the same time overcomes forgetting of global knowledge during local training. Specifically, the approach first leverages a label skew-awared loss to preserve the global label knowledge, and then aligns local feature distributions to consolidate global knowledge against local feature skew. We validated our method in three Non-IID scenarios using four public datasets, including the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) dataset, the Federated Tumor Segmentation (FeTS) dataset, the Multi-Modality Whole Heart Segmentation (MMWHS) dataset and the Multi-Site Prostate T2-weighted MRI segmentation (MSProsMRI) dataset. Results show that our method could achieve superior performance over existing methods. Code will be released via https://zmiclab.github.io/projects.html once the paper gets accepted.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Male , Humans , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Prostate/pathology , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...