Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 6: 25647, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27157928

ABSTRACT

Methane oxidation coupled to nitrite reduction is mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4-2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 10(6) and 3.2 × 10(7) copies g(-1) sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats.


Subject(s)
Bacteria/classification , Ecosystem , Fresh Water , Phylogeny , Base Sequence , Biodiversity , Gene Dosage , Principal Component Analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA
2.
Environ Sci Pollut Res Int ; 23(2): 1344-52, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26362637

ABSTRACT

The anaerobic ammonium oxidation (anammox) process, which can simultaneously remove ammonium and nitrite, both toxic to aquatic animals, can be very important to the aquaculture industry. Here, the presence and activity of anammox bacteria in the sediments of four different freshwater aquaculture ponds were investigated by using Illumina-based 16S rRNA gene sequencing, quantitative PCR assays and (15)N stable isotope measurements. Different genera of anammox bacteria were detected in the examined pond sediments, including Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, with Candidatus Brocadia being the dominant anammox genus. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria ranged from 5.6 × 10(4) to 2.1 × 10(5) copies g(-1) sediment in the examined ponds. The potential anammox rates ranged between 3.7 and 19.4 nmol N2 g(-1) sediment day(-1), and the potential denitrification rates varied from 107.1 to 300.3 nmol N2 g(-1) sediment day(-1). The anammox process contributed 1.2-15.3% to sediment dinitrogen gas production, while the remainder would be due to denitrification. It is estimated that a total loss of 2.1-10.9 g N m(-2) per year could be attributed to the anammox process in the examined ponds, suggesting that this process could contribute to nitrogen removal in freshwater aquaculture ponds.


Subject(s)
Ammonium Compounds/metabolism , Bacteria/metabolism , Geologic Sediments/microbiology , Ponds/microbiology , Anaerobiosis , Aquaculture , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Denitrification , Nitrites/metabolism , Nitrogen/metabolism , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics
3.
Appl Microbiol Biotechnol ; 100(7): 3291-300, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26621804

ABSTRACT

Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.


Subject(s)
Ammonium Compounds/chemistry , Bacteria/genetics , Fresh Water/microbiology , Genes, Bacterial , Soil Microbiology , Wetlands , Ammonium Compounds/metabolism , Anaerobiosis , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Isotope Labeling , Nitrogen Cycle , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil/chemistry
4.
Huan Jing Ke Xue ; 36(8): 3099-105, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26592047

ABSTRACT

Phosphogypsum is a phosphorus chemical waste which has not been managed and reused well, resultantly, causing environmental pollution and land-occupation. Phosphogypsum wastes were used as a soil amendment to assess the effect on wheat growth, yield and CO2 emissions from winter wheat fields. Its economic and environmental benefits were analyzed at the same time. The results showed that wheat yield was increased by 37.71% in the treatment of phosphogypsum of 2 100 kg x hm(-2). Compared with the control treatment, throughout the wheat growing season, CO2 emission was accumulatively reduced by 3% in the treatment of phosphogypsum waste of 1050 kg x hm(-2), while reduced by 8% , 10% , and 6% during the jointing stage, heading date and filling period of wheat, respectively; while CO2 emission was accumulatively reduced by 7% in the treatment of phosphogypsum waste of 2 100 kg x hm(-2) throughout the wheat growing season, as reduced by 11% , 4% , and 12% during the reviving wintering stage, heading date and filling period of wheat, respectively. It was better for CO2 emission reduction in the treatment of a larger amount of phosphogypsum waste. In the case of application of phosphogypsum waste residue within a certain range, the emission intensity of CO2 ( CO2 emissions of per unit of fresh weight or CO2 emissions of per unit of yield) , spike length, fresh weight and yield showed a significantly negative correlation--the longer the ear length, the greater fresh weight and yield and the lower the CO2 emissions intensity. As to the carbon trading, phosphogypsum utilization was of high economic and environmental benefits. Compared with the control, the ratio of input to output changed from 1: 8.3 to 1: 10.7, which in the same situation of investment the output could be increased by 28.92% ; phosphogypsum as a greenhouse gas reducing agent in the wheat field, it could decrease the cost and increase the environmental benefit totally about 290 yuan per unit of ton. The results demonstrated phosphogypsum wastes could obviously decrease the CO2 emission from field soil and had a great potential to control agricultural greenhouse gases. Hopefully it has an important application perspective for the low-carbon, ecological and sustainable agricultural development.


Subject(s)
Calcium Sulfate/analysis , Carbon Dioxide/analysis , Phosphorus/analysis , Soil Pollutants/analysis , Triticum/drug effects , Agriculture/economics , Gases , Soil , Triticum/growth & development
5.
Appl Microbiol Biotechnol ; 99(13): 5709-18, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25690313

ABSTRACT

The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2 g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10(5) to 3.0 × 10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.


Subject(s)
Ammonium Compounds/metabolism , Bacteria, Anaerobic/growth & development , Bacteria, Anaerobic/metabolism , Soil Microbiology , Vegetables/growth & development , Anaerobiosis , Bacteria, Anaerobic/classification , China , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Isotope Labeling , Molecular Sequence Data , Nitrogen/metabolism , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
6.
Appl Microbiol Biotechnol ; 99(1): 133-42, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398284

ABSTRACT

Nitrite-dependent anaerobic methane oxidation (N-DAMO) is a recently discovered process that is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). This process constitutes a unique association between the two major global elements essential to life, carbon and nitrogen, and may act as an important and overlooked sink of the greenhouse gas methane. In recent years, more and more studies have reported the distribution of M. oxyfera-like bacteria and the occurrence of N-DAMO process in different natural ecosystems, including freshwater lakes, rivers, wetlands and marine ecosystems. Previous studies have estimated that a total of 2%-6% of current worldwide methane flux in wetlands could be consumed via the N-DAMO process. These findings indicate that N-DAMO is indeed a previously overlooked methane sink in natural ecosystems. Given the worldwide increase in anthropogenic nitrogen pollution, the N-DAMO process as a methane sink in reducing global warming could become more important in the future. The present mini-review summarises the current knowledge of the ecological distribution of M. oxyfera-like bacteria and the potential importance of the N-DAMO process in reducing methane emissions in various natural ecosystems. The potential influence of environmental factors on the N-DAMO process is also discussed.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Ecosystem , Environmental Microbiology , Methane/metabolism , Nitrites/metabolism , Anaerobiosis , Carbon/metabolism , Energy Metabolism , Nitrogen/metabolism , Oxidation-Reduction
7.
Curr Microbiol ; 70(4): 562-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25519694

ABSTRACT

Microbial mediated nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples the oxidation of methane to nitrite reduction, is a recently discovered process. The discovery of N-DAMO process makes great contributions to complete the biogeochemical cycles of carbon and nitrogen, and to develop novel economic biotechnology for simultaneous carbon and nitrogen removal. This process is catalysed by the unique bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which belongs to the candidate phylum NC10, a phylum having no members in pure culture. In recent years, some microbiological properties of M. oxyfera have been unravelled. The most prominent examples are the discoveries of the special ultrastructure (star-like) of the cell shape and the unique chemical composition (10MeC16:1Δ7) of M. oxyfera that have not been found in other bacteria yet. More importantly, a new intra-aerobic pathway was discovered in M. oxyfera. It seems that M. oxyfera produces oxygen intracellularly by the conversion of two nitric oxide molecules to dinitrogen gas and oxygen, and the produced oxygen is then used for methane oxidation and normal respiration. The current paper is a systematic review in the microbiological properties of M. oxyfera, especially for its special properties.


Subject(s)
Bacteria/metabolism , Methane/metabolism , Nitrites/metabolism , Anaerobiosis , Bacteria/chemistry , Bacteria/ultrastructure , Carbon/metabolism , Metabolic Networks and Pathways/genetics , Nitric Oxide/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...