Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 18: 1380121, 2024.
Article in English | MEDLINE | ID: mdl-38846715

ABSTRACT

Objectives: Fibromyalgia (FM) has been associated with decreased hippocampal volume; however, the atrophy patterns of hippocampal subregions have not yet been identified. We therefore aimed to evaluate the volumes of hippocampal subregions in FM patients with mild cognitive impairment (MCI), and to explore the relationship between different subregional alterations and cognitive function. Methods: The study included 35 FM patients (21 with MCI and 14 without MCI) and 35 healthy subjects. All subjects performed the Montreal Cognitive Assessment (MoCA) to assess cognitive function. FreeSurfer V.7.3.2 was used to calculate hippocampal subregion volumes. We then compared hippocampal subregion volumes between the groups, and analyzed the relationship between hippocampal subregion volume and cognitive function using a partial correlation analysis method. Results: Compared with the healthy subjects, FM patients with MCI had smaller hippocampal volumes in the left and right CA1 head, Molecular layer head, GC-DG head, and CA4 head, and in the left Presubiculum head. Poorer executive function, naming ability, and attention were associated with left CA1 head and left Molecular layer head atrophy. By contrast, hippocampal subregion volumes in the FM patients without MCI were slightly larger than or similar to those in the healthy subjects, and were not significantly correlated with cognitive function. Conclusion: Smaller volumes of left CA1 head and left Molecular layer head were associated with poorer executive function, naming ability, and attention in FM patients with MCI. However, these results were not observed in the FM patients without MCI. These findings suggest that the hippocampal subregions of FM patients might present compensatory mechanisms before cognitive decline occurs.

2.
Talanta ; 272: 125840, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38430865

ABSTRACT

The development of convenient, fast, and cost-effective methods for differentiating and detecting common organic pollutant phenols has become increasingly important for environmental and food safety. In this study, a copper metal-organic framework (Cu-MOF) with flower-like morphology was synthesized using 2-methylimidazole (2-MI) as ligands. The Cu-MOF was designed to mimic the natural laccase active site and proved demonstrated excellent mimicry of enzyme-like activity. Leveraging the superior properties of the constructed Cu-MOF, a colorimetric method was developed for analyzing phenolic compounds. This method exhibited a wide linear range from 0.1 to 100 µM with a low limit of detection (LOD) of 0.068 µM. Besides, by employing principal component analysis (PCA), nine kinds of phenols was successfully distinguished and identified. Moreover, the combination of smartphones with RGB profiling enabled real-time, quantitative, and high-throughput detection of phenols. Therefore, this work presents a paradigm and offers guidance for the differentiation and detection of phenolic pollutants in the environment.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Laccase , Copper/chemistry , Colorimetry , Phenols
3.
Plant J ; 117(2): 483-497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37901950

ABSTRACT

Plants grown under low magnesium (Mg) soils are highly susceptible to encountering light intensities that exceed the capacity of photosynthesis (A), leading to a depression of photosynthetic efficiency and eventually to photooxidation (i.e., leaf chlorosis). Yet, it remains unclear which processes play a key role in limiting the photosynthetic energy utilization of Mg-deficient leaves, and whether the plasticity of A in acclimation to irradiance could have cross-talk with Mg, hence accelerating or mitigating the photodamage. We investigated the light acclimation responses of rapeseed (Brassica napus) grown under low- and adequate-Mg conditions. Magnesium deficiency considerably decreased rapeseed growth and leaf A, to a greater extent under high than under low light, which is associated with higher level of superoxide anion radical and more severe leaf chlorosis. This difference was mainly attributable to a greater depression in dark reaction under high light, with a higher Rubisco fallover and a more limited mesophyll conductance to CO2 (gm ). Plants grown under high irradiance enhanced the content and activity of Rubisco and gm to optimally utilize more light energy absorbed. However, Mg deficiency could not fulfill the need to activate the higher level of Rubisco and Rubisco activase in leaves of high-light-grown plants, leading to lower Rubisco activation and carboxylation rate. Additionally, Mg-deficient leaves under high light invested more carbon per leaf area to construct a compact leaf structure with smaller intercellular airspaces, lower surface area of chloroplast exposed to intercellular airspaces, and CO2 diffusion conductance through cytosol. These caused a more severe decrease in within-leaf CO2 diffusion rate and substrate availability. Taken together, plant plasticity helps to improve photosynthetic energy utilization under high light but aggravates the photooxidative damage once the Mg nutrition becomes insufficient.


Subject(s)
Anemia, Hypochromic , Brassica napus , Brassica napus/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Magnesium , Carbon Dioxide , Photosynthesis/physiology , Plant Leaves/metabolism
4.
Mikrochim Acta ; 190(9): 359, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37605047

ABSTRACT

By serving dipyridylic acid (DPA) and 2,5-dihydroxyterephthalic acid (DHTA) as the biligands, a novel lanthanide (Eu3+) metal-organic framework (MOF) namely Eu-DHTA/DPA was prepared for specific Hg2+ fluorescence determination. The dual-ligand approach can endows the resulting luminescent MOF with dual emission of ratiometric fluorescence and uniform size. Eu3+ produces intense red fluorescence when activated by the ligand DPA, while the other ligand DHTA produces yellow fluorescence. Under 273 nm excitation, the presence of Hg2+ in the monitoring environment causes an increase in the intensity of the DHTA fluorescence peak at 559 nm and a decrease in the intensity of the Eu3+ fluorescence peak at 616 nm. Hg2+ effectively quenches the fluorescence emission of the central metal Eu3+ in Eu-DHTA/DPA at 616 nm through a dynamic quenching effect. This recognition process occurs due to the coordination of Hg2+ with ligands such as benzene rings, carboxyl groups, and pyridine N in three-dimensional space. Hg2+ was detected by measuring the ratio between two fluorescence peaks (I559 nm/I616 nm) within the range 2-20 µM, achieving a remarkably low detection limit of 40 nM. The established ratiometric fluorescence method has been successfully applied to the determination of Hg2+ in industrial wastewater of complex composition. The method plays a crucial role in the rapid and sensitive monitoring of Hg2+ in real environmental samples. The recoveries ranged from 92.82% to 112.67% (n = 3) with relative standard deviations (RSD) below 4.8%. This study offers a convenient and effective method for constructing probes for Hg2+ monitoring, with practical applications in environmental monitoring.

5.
Psychol Health Med ; 28(9): 2728-2744, 2023.
Article in English | MEDLINE | ID: mdl-35473482

ABSTRACT

Bibliotherapy is an important part of art therapy and many publications regarding bibliotherapy have been published in the past. However, there has none about the scientometric study to systematically analyze the development and emerging research trends on bibliotherapy. Therefore, we performed a scientometric investigation to describe trends of this theme. All publications related to bibliotherapy published from 1980 to 2020 were identified and selected from Science Citation Index Expanded, Social Sciences Citation Index, and Arts & Humanities Citation Index of Web of Science Core Collection. VOSviewer was used to create collaborative network plots of countries, institutions, and authors and to perform cluster analysis of keywords. A total of 703 articles were searched, and we retrieved the 100 most cited articles published by 146 institutions from 15 countries in 57 academic journals. The United States occupied a leading position in the field of bibliotherapy and Linköping University was the most productive institution. Journal of Consulting and Clinical Psychology was the most productive journal. Andersson G, Carlbring P, and Cuijpers P may have an important influence on bibliotherapy research. The applications in depression, anxiety, panic disorder, insomnia, and aphasia are the hot themes. This scientometric review provided a comprehensive understanding of the bibliotherapy research using quantitative and qualitative methods, which can provide references for researchers in the bibliotherapy field. As investigators continue to work, we look forward to the development of bibliotherapy efficacy and the implementation form and steps.

6.
Materials (Basel) ; 15(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35591631

ABSTRACT

NiTi alloys are widely known for their shape memory effect and super-elasticity. In this study, the laser cladding method was applied to prepare Ni-rich NiTi alloy coatings on 316L stainless steel substrate. The microstructure, phase composition, element distribution and phase transformation behavior of the coatings were investigated in as-fabricated and annealing-treated states. The results indicated that the recrystallized microstructure obtained and the content of Ni3Ti and Ti2Ni phases increased significantly with a rising annealing temperature. Annealing treatment also induced a decrease in the phase-transition enthalpy and a rise in the transformation temperature, even though no obvious martensite transformation was observed. This was suppressed due to the Fe element diffused from the substrate and was probably retarded by the mounting metallic compounds formed during annealing as well. The mechanical properties have also improved obviously; coatings annealed under 850 °C exhibited the highest microhardness of 839 HV, and the wear resistance of the coatings after annealing was enhanced with an 11% average wear mass loss reduction.

7.
Diabetol Metab Syndr ; 14(1): 8, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35033170

ABSTRACT

BACKGROUND: Body composition alterations may participate in the pathophysiological processes of type 2 diabetes (T2D). A sedentary lifestyle may be responsible for alterations of body composition and adverse consequences, but on which body composition of patients with T2D and to what extent the sedentary lifestyle has an effect have been poorly investigated. METHODS: We recruited 402 patients with T2D for this cross-sectional study. All patients received questionnaires to evaluate sedentary time and were further divided into three subgroups: low sedentary time (LST, < 4 h, n = 109), middle sedentary time (MST, 4-8 h, n = 129) and high sedentary time (HST, > 8 h, n = 164). Each patient underwent a dual energy X-ray absorptiometry (DXA) scan to detect body composition, which included body fat percentage (B-FAT), trunk fat percentage (T-FAT), appendicular skeletal muscle index (ASMI), lumbar spine bone mineral density (BMD) (LS-BMD), femoral neck BMD (FN-BMD), hip BMD (H-BMD) and total BMD (T-BMD). Other relevant clinical data were also collected. RESULTS: With increasing sedentary time (from the LST to HST group), B-FAT and T-FAT were notably increased, while ASMI, LS-BMD, FN-BMD, H-BMD and T-BMD were decreased (p for trend < 0.01). After adjustment for other relevant clinical factors and with the LST group as the reference, the adjusted mean changes [B (95% CI)] in B-FAT, T-FAT, ASMI, LS-BMD, FN-BMD, H-BMD and T-BMD in the HST group were 2.011(1.014 to 3.008)%, 1.951(0.705 to 3.197)%, - 0.377(- 0.531 to - 0.223) kg/m2, - 0.083(- 0.124 to - 0.042) g/cm2, - 0.051(- 0.079 to - 0.024) g/cm2, - 0.059(- 0.087 to - 0.031) g/cm2 and - 0.060(- 0.088 to - 0.033) g/cm2, p < 0.01, respectively. CONCLUSIONS: A sedentary lifestyle may independently account for increases in trunk and body fat percentage and decreases in appendicular skeletal muscle mass and BMD of the lumbar spine, femoral neck, hip and total body in patients with T2D.

8.
J Hazard Mater ; 421: 126678, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34333410

ABSTRACT

Soil contamination by arsenic (As) presents a high risk to public health, necessitating urgent remediation. This study sought to develop an efficient strategy for the phytoremediation of As-contaminated soil. The effects of Stevia rebaudiana Bertoni residue (SR) on the available As (A-As) concentration of soil and As extraction from the soil by Pteris vittata L. were studied by soil simulation, pot, and field experiments. The A-As concentration in the soil simulation experiment increased significantly by 84.20% after 20 days. The biomass, As concentration, and total extracted As of SR-treated P. vittata L. in the pot experiment increased significantly by 50.66%, 120.2%, and 171.2%, respectively, compared to the untreated control. The SR-treated rhizosphere soil in the pot experiment displayed a significant 21.72% decrease in total As concentration. In the one-year field experiment, treatment with SR resulted in a significant 191.1% increase in As extraction by P. vittata L. and a significant 10.26% reduction in rhizosphere soil As concentration compared to the control. This study proposes a potential mechanism for SR-mediated enhancement of P. vittata L. As extraction ability and provides a new, economic, and environmentally friendly method for As-contaminated soil remediation.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Stevia , Arsenic/analysis , Biodegradation, Environmental , Soil , Soil Pollutants/analysis
9.
Oxid Med Cell Longev ; 2021: 4158495, 2021.
Article in English | MEDLINE | ID: mdl-34426759

ABSTRACT

Cellular senescence has been considered an important driver of many chronic lung diseases. However, the specific mechanism of cellular senescence in silicosis is still unknown. In the present study, silicotic rats and osteoclast stimulatory transmembrane protein (Ocstamp) overexpression of MLE-12 cells were used to explore the mechanism of OC-STAMP in cellular senescence in alveolar epithelial cell type II (AEC2). We found an increasing level of OC-STAMP in AEC2 of silicotic rats. Overexpression of Ocstamp in MLE-12 cells promoted epithelial-mesenchymal transition (EMT), endoplasmic reticulum (ER) stress, and cellular senescence. Myosin heavy chain 9 (MYH9) was a potential interacting protein of OC-STAMP. Knockdown of Ocstamp or Myh9 inhibited cellular senescence in MLE-12 cells transfected with pcmv6-Ocstamp. Treatment with 4-phenylbutyrate (4-PBA) to inhibit ER stress also attenuated cellular senescence in vitro or in vivo. In conclusion, OC-STAMP promotes cellular senescence in AEC2 in silicosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , Cellular Senescence , Gene Expression Regulation , Membrane Proteins/biosynthesis , Silicosis/metabolism , Alveolar Epithelial Cells/pathology , Animals , Cell Line , Disease Models, Animal , Rats , Rats, Wistar , Silicosis/pathology
10.
Medicine (Baltimore) ; 100(16): e25532, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33879694

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread almost all regions of the world and caused great loss to the whole body of mankind. Thus, numerous clinical trials were conducted to find specific medicine for COVID-19 recently. However, it remains unanswered whether they are beneficial. OBJECTIVE: This study aimed to evaluate the efficiency and safety of the COVID-19 medicine. METHODS: Studies were determined through searching PubMed, Embase, Cochrane Library, and Medline. The studies of COVID-19 medicine were involved with eligible end points containing mortality, discharge rate, rate of clinical improvement, and rate of serious adverse events. RESULTS: A total of 33 studies involving 37,879 patients were included in our study, whose intervening measures contained three major types of COVID-19 medicine, ACEI/ARB, antiviral medicine, and chloroquine/hydroxychloroquine. Compared to control group, COVID-19 drugs have no distinct effect on mortality (RR, 0.93; 95% CI, 0.79-1.11, P = .43) and discharge rate (RR, 1.06; 95% CI, 0.98-1.14, P = .13). However, antiviral medicine presents the obvious advantage in clinical improvement (RR, 1.11; 95% CI, 1.01-1.23, P < .05). In addition, the serious adverse events rate (RR, 0.75; 95% CI, 0.63-0.88, P < .05) of COVID-19 medicine is lower than control group. CONCLUSION: The results indicated antiviral medicine was potential specific medicine for COVID-19 treatment by improving clinical symptoms, but it failed to increase the discharge rate and reduce mortality. Chloroquine/hydroxychloroquine and ACEI/ARB had no significant effect on treatment of COVID-19, thus they were not recommended for routine medication. Moreover, more trials are needed to find effective drugs to lower the mortality of COVID-19 patients.


Subject(s)
Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Angiotensin Receptor Antagonists/adverse effects , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/mortality , Chloroquine/adverse effects , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Treatment Outcome
11.
J Exp Clin Cancer Res ; 38(1): 457, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31699152

ABSTRACT

BACKGROUND: MYO1C, an actin-based motor protein, is involved in the late stages of autophagosome maturation and fusion with the lysosome. The molecular mechanism by which MYO1C regulates autophagosome-lysosome fusion remains largely unclear. METHODS: Western blotting was used to determine the expression of autophagy-related proteins. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes. An immunoprecipitation assay was utilized to detect protein-protein interactions. Immunofluorescence analysis was used to detect autophagosome-lysosome fusion and colocalization of autophagy-related molecules. An overexpression plasmid or siRNA against MYO1C were sequentially introduced into human breast cancer MDA-MB-231 cells. RESULTS: We show here that cepharanthine (CEP), a novel autophagy inhibitor, inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. Mechanistically, we found for the first time that MYO1C was downregulated by CEP treatment. Furthermore, the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 was inhibited by CEP treatment. Knockdown of MYO1C further decreased the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment, leading to blockade of autophagosome-lysosome fusion. In contrast, overexpression of MYO1C significantly restored the interaction/colocalization of MYO1C and F-actin with either LC3 or LAMP1 inhibited by CEP treatment. CONCLUSION: These findings highlight a key role of MYO1C in the regulation of autophagosome-lysosome fusion through F-actin remodeling. Our findings also suggest that CEP could potentially be further developed as a novel autophagy/mitophagy inhibitor, and a combination of CEP with classic chemotherapeutic drugs could become a promising treatment for breast cancer.


Subject(s)
Actins/metabolism , Autophagosomes/metabolism , Gene Expression Regulation , Lysosomes/metabolism , Myosin Type I/genetics , Autophagosomes/ultrastructure , Autophagy , Benzylisoquinolines/chemistry , Benzylisoquinolines/pharmacology , Cell Line, Tumor , Chromatography, Liquid , Humans , Lysosomes/ultrastructure , Mass Spectrometry , Mitophagy , Protein Binding , Signal Transduction
12.
Sensors (Basel) ; 19(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514430

ABSTRACT

Microlens array (MLA) errors in plenoptic cameras can cause the confusion or mismatching of 4D spatio-angular information in the image space, significantly affecting the accuracy and efficiency of target reconstruction. In this paper, we present a high-accuracy correction method for light fields distorted by MLA errors. Subpixel feature points are extracted from the microlens subimages of a raw image to obtain correction matrices and perform registration of the corresponding subimages at a subpixel level. The proposed method is applied for correcting MLA errors of two different categories in light-field images, namely form errors and orientation errors. Experimental results show that the proposed method can rectify the geometric and intensity distortions of raw images accurately and improve the quality of light-field refocusing. Qualitative and quantitative comparisons between images before and after correction verify the performance of our method in terms of accuracy, stability, and adaptability.

13.
J Exp Clin Cancer Res ; 38(1): 225, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31138329

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is often aggressive and associated with a poor prognosis. Due to the lack of available targeted therapies and to problems of resistance with conventional chemotherapeutic agents, finding new treatments for TNBC remains a challenge and a better therapeutic strategy is urgently required. METHODS: TNBC cells and xenograft mice were treated with a combination of chloroquine (CQ) and isorhamnetin (IH). Mitochondrial fission, apoptosis, and related signaling pathways were determined by flow cytometry, immunofluorescence, and related molecular biological techniques. RESULTS: The inhibition of autophagy/mitophagy by CQ selectively enhances IH-induced mitochondrial fission and apoptosis in TNBC cells but not in estrogen-dependent breast cancer cells. These events were accompanied by mitochondrial translocation of Bax and the release of cytochrome c. Mechanistically, these effects were associated with oxidative stress-mediated phosphorylation of CaMKII (Thr286) and Drp1 (S616), and subsequent mitochondrial translocation of CaMKII and Drp1. The interruption of the CaMKII pathway by genetic approaches (e.g. CaMKII mutant or siRNA) attenuated combination-mediated mitochondrial fission and apoptosis. The combination of CQ/IH was a marked inhibitor tumor growth, inducing apoptosis in the TNBC xenograft mouse model in association with the activation of CaMKII and Drp1 (S616). CONCLUSIONS: Our study highlights the critical role of ROS-mediating CaMKII/Drp1 signaling in the regulation of mitochondrial fission and apoptosis induced by combination of CQ/IH. These findings also suggest that IH could potentially be further developed as a novel chemotherapeutic agent. Furthermore, a combination of IH with classic autophagy/mitophagy inhibitor could represent a novel therapeutic strategy for the treatment of TNBC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chloroquine/administration & dosage , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/metabolism , Quercetin/analogs & derivatives , Reactive Oxygen Species/metabolism , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Chloroquine/pharmacology , Dynamins , Female , Humans , Mice , Mitochondrial Dynamics/drug effects , Quercetin/administration & dosage , Quercetin/pharmacology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
14.
J Exp Clin Cancer Res ; 38(1): 67, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744690

ABSTRACT

BACKGROUND: Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular mechanism for lysosomal degradation of damaged cellular components. The specific degradation of nuclear components by the autophagy pathway is called nucleophagy. Most studies have focused on autophagic turnover of cytoplasmic materials, and little is known about the role of autophagy in the degradation of nuclear components. METHODS: Human MDA-MB-231 and MCF-7 breast cancer cell lines were used as model systems in vitro. Induction of nucleophagy by nuclear DNA leakage was determined by western blot and immunofluorescence analyses. The interaction and colocalization of LC3 and lamin A/C was determined by immunoprecipitation and immunofluorescence. The role of the SUMO E2 ligase, UBC9, on the regulation of SUMOylation of lamin A/C and nucleophagy was determined by siRNA silencing of UBC9, and analyzed by immunoprecipitation and immunofluorescence. RESULTS: DNA damage induced nuclear accumulation of UBC9 ligase which resulted in SUMOylation of lamin A/C and that SUMOylation of this protein was required for the interaction between the autophagy protein LC3 and lamin A/C, which was required for nucleophagy. Knockdown of UBC9 prevented SUMOylation of lamin A/C and LC3-lamin A/C interaction. This attenuated nucleophagy which degraded nuclear components lamin A/C and leaked nuclear DNA mediated by DNA damage. CONCLUSIONS: Our findings suggest that nuclear DNA leakage activates nucleophagy through UBC9-mediated SUMOylation of lamin A/C, leading to degradation of nuclear components including lamin A/C and leaked nuclear DNA.


Subject(s)
Cell Nucleus/metabolism , DNA Damage , Lamin Type A/genetics , Lamin Type A/metabolism , Lamins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , A549 Cells , Autophagy/physiology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , HEK293 Cells , Hep G2 Cells , Humans , Lamins/genetics , MCF-7 Cells , Microscopy, Confocal , Sumoylation , Ubiquitin-Conjugating Enzymes/genetics
15.
Leukemia ; 33(5): 1090-1101, 2019 05.
Article in English | MEDLINE | ID: mdl-30518811

ABSTRACT

Ars2 is a component of the nuclear cap-binding complex (CBC) that contributes to microRNA biogenesis and is required for cellular proliferation. Little is known regarding the functional role of Ars2 in cell proliferation and leukemogenesis of acute myeloid leukemia. Here, we show that the elevated expression of Ars2 was observed in acute myeloid leukemia (AML) cell lines and bone marrow samples from AML patients and was correlated with poorer overall survival. Overexpression of Ars2 promoted cell proliferation and colony formation in AML cells, whereas depletion of Ars2 inhibited cell proliferation and colony formation. Mechanistic studies reveal that depletion of Ars2 suppressed the interaction of Ars2 with CBC and led to alterations in miRNA processing. Furthermore, Ars2 depletion reduced the levels of miR-6734-3p, resulting in upregulation of p27 and culminating in cell cycle arrest at the G1 phase. In vivo studies indicate that depletion of Ars2 significantly reduced leukemic cell burden and prolonged the survival time of the leukemia-bearing mice. These findings indicate that Ars2 may not only play a crucial role in the regulation of cell proliferation and leukemogenesis, but could also be identified as a critical therapeutic target for treatment of AML.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Nuclear Proteins/genetics , 3' Untranslated Regions , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Databases, Factual , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Models, Biological , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , RNA Interference , Tumor Stem Cell Assay
16.
Article in English | MEDLINE | ID: mdl-27886137

ABSTRACT

Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi'an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index's weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem's service capability is closely related to water resources, providing a method for managing water resources. Using Xi'an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers.


Subject(s)
Climate Change , Conservation of Natural Resources/methods , Ecosystem , Water Resources , China , Cities , Environmental Monitoring , Water Supply
17.
Front Plant Sci ; 7: 27, 2016.
Article in English | MEDLINE | ID: mdl-26870053

ABSTRACT

Bagged fruits of green apple cultivar "Granny Smith" have been found to turn cardinal red after debagging during fruit-ripening in the Loess Plateau region of China. To understand this phenomenon at post-transcriptional level, we have investigated the roles of microRNAs (miRNAs) in response to debagging. Three small RNA libraries were primarily constructed from peels of "Granny Smith" apples subjected to bagging followed by sunlight re-exposure treatments (0, 6 h, 1 day) (debagging), and from peels of apples without any bagging treatments (0, 6 h, 1 day). 201 known miRNAs belonging to 43 miRNA families and 220 novel miRNAs were identified via high-throughput sequencing. Some miRNAs were found to be differentially expressed after debagging, which indicated that miRNAs affected anthocyanin accumulation through their target genes in mature apple. To further explore the effect of debagging on miRNAs regulating the expression of anthocyanin regulatory genes, four miRNAs and their target genes regulating anthocyanin accumulation, miR156, miR828, miR858, and miR5072, were compared between green cultivar "Granny Smith" and red cultivar "Starkrimson." Results showed that mdm-miR828 and mdm-miR858 regulated anthocyanin contents in both apple cultivars, while mdm-miR156 only affected anthocyanin accumulation in "Granny Smith," and miR5072 affected anthocyanin accumulation in "Starkrimson." Additional analysis of gene ontology for the differentially expressed miRNAs after debagging treatments and their predicted target genes showed that they were involved in photo-protective response after debagging from 0 h to 1 day; they might play important roles in fruit development and adaptation to high light stress.

18.
Br J Pharmacol ; 165(6): 1813-1826, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21950524

ABSTRACT

BACKGROUND AND PURPOSE: Ursolic acid (UA) has been extensively used as an anti-leukaemic agent in traditional Chinese medicine. In the present study, we investigated the ability of UA to induce apoptosis in human leukaemia cells in relation to its effects on caspase activation, Mcl-1 down-regulation and perturbations in stress-induced signalling pathways such as PKB and JNK. EXPERIMENTAL APPROACH: Leukaemia cells were treated with UA after which apoptosis, caspase activation, PKB and JNK signalling pathways were evaluated. The anti-tumour activity of UA was evaluated using xenograft mouse model. KEY RESULTS: UA induced apoptosis in human leukaemia cells in a dose- and time-dependent manner; this was associated with caspase activation, down-regulation of Mcl-1 and inactivation of PKB accompanied by activation of JNK. Enforced activation of PKB by a constitutively active PKB construct prevented UA-mediated JNK activation, Mcl-1 down-regulation, caspase activation and apoptosis. Conversely, UA lethality was potentiated by the PI3-kinase inhibitor LY294002. Interruption of the JNK pathway by pharmacological or genetic (e.g. siRNA) attenuated UA-induced apoptosis. Furthermore, UA-mediated inhibition of tumour growth in vivo was associated with induction of apoptosis, inactivation of PKB as well as activation of JNK. CONCLUSIONS AND IMPLICATIONS: Collectively, these findings suggest a hierarchical model of UA-induced apoptosis in human leukaemia cells in which UA induces PKB inactivation, leading to JNK activation and culminating in Mcl-1 down-regulation, caspase activation and apoptosis. These findings indicate that interruption of PKB/JNK pathways may represent a novel therapeutic strategy in haematological malignancies.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Leukemia/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Triterpenes/therapeutic use , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Leukemia/metabolism , MAP Kinase Kinase 4/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Myeloid Cell Leukemia Sequence 1 Protein , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Xenograft Model Antitumor Assays , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...