Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(14): 6289-6299, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38482899

ABSTRACT

The solubility of Eu(III) was investigated under undersaturated conditions in acidic, dilute to concentrated MgSO4 and Na2SO4 solutions at T = (22 ± 2) °C. After attaining equilibrium conditions, solid phases were characterized by a multi-method approach, including X-ray diffraction (XRD), Raman and infrared (IR) spectroscopy, quantitative chemical analysis (ICP-OES) and thermogravimetric analysis (TG-DTA). A total of 45 solubility samples were investigated for the systems Eu2(SO4)3-MgSO4-H2O (19 samples) and Eu2(SO4)3-Na2SO4-H2O (26 samples). Eu2(SO4)3·8H2O(cr) was found to control the solubility of Eu(III) in all investigated MgSO4 solutions, as well as in dilute Na2SO4 systems. The transformation of Eu2(SO4)3·8H2O(cr) into the double salt Na2Eu2(SO4)4·2H2O(cr) was observed at mNa2SO4 > 0.01 mol kg-1. The latter phase is characterized by significantly lower solubility. Based on these experimental solubility measurements, thermodynamic and activity models were proposed based on the Pitzer equations considering the full dissociation of the Eu(III) species in MgSO4 and Na2SO4 aqueous solutions, i.e. deliberately excluding Eu(III)-sulfate complex formation. A combination of the geochemical calculation code PhreeSCALE and the parameter estimation code PEST was used to determine the values of solubility products and binary and ternary specific interaction parameters (ß(0)ij, ß(1)ij, Cϕij, θik, Ψijk).

2.
Dalton Trans ; 53(14): 6323-6332, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38487924

ABSTRACT

A time-resolved laser fluorescence spectroscopy (TRLFS) study was carried out to investigate the Eu(III)-SO4 complexation at room temperature over a wide range of Na2SO4 concentrations (0-2 mol kg-1). Spectroscopic observations confirm the step-wise formation of the aqueous complexes Eu(SO4)+, Eu(SO4)2- and Eu(SO4)33- over the investigated Na2SO4 concentrations. Combining TRLFS data obtained in this study and solubility data reported in Part I of this work for the Eu2(SO4)3-Na2SO4-H2O and Eu2(SO4)3-MgSO4-H2O systems, thermodynamic and activity models were derived based on the SIT and Pitzer formalisms. A combination of the geochemical calculation codes PhreeqC (SIT), PhreeSCALE (Pitzer) and the parameter estimation code PEST was used to determine the solubility products of Eu2(SO4)3·8H2O(cr) and Na2Eu2(SO4)4·2H2O(cr), stability constants of the Eu(III)-SO4 complexes (ß0i), and the specific binary and ternary interaction parameters (εij, ß(0)ij, ß(1)ij, Cϕij, θik, Ψijk) for both activity models. The thermodynamic constants determined in this work are discussed with reference to values available in the literature.

3.
Dalton Trans ; 52(37): 13324-13331, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37670614

ABSTRACT

The uptake of 63Ni(II), 152Eu(III) and 242Pu(IV) by hardened cement paste (HCP, CEM I) in the degradation stage II (pH ≈ 12.5, [Ca] ≈ 0.02 M) was investigated in the presence of a degradation leachate of UP2W, a polyacrylonitrile-based (PAN) material used as a filter aid in nuclear power plants. The degradation leachate with a concentration of dissolved organic carbon of ∼40 ppm was obtained from the degradation of UP2W in portlandite-buffered solutions for ca. 1100 days. Redox conditions in the Pu systems were buffered with hydroquinone, which defines mildly reducing conditions (pe + pH ≈ 10) where Pu(IV) is the predominant oxidation state. The degradation leachate investigated in this work is moderately sorbed by cement, with distribution ratios (Rd) of (0.35 ± 0.15) m3 kg-1. These values are 30 to 100 times greater than distribution ratios previously reported for proxy ligands of PAN degradation products, i.e., glutaric acid, α-hydroxyisobutyric acid and 3-hydroxybutyric acid. The presence of the degradation leachate induces a moderate decrease in the uptake of 63Ni(II), 152Eu(III) and 242Pu(IV) by cement, as compared to the sorption in the presence of the proxy ligands. Nevertheless, retention in the presence of the degradation leachate remains high for all investigated radionuclides, with Rd(63Ni(II)) ≈ 2 m3 kg-1, Rd(152Eu(III)) ≈ 100 m3 kg-1 and Rd(242Pu(IV)) ≈ 30 m3 kg-1. These observations possibly reflect that the multiple functionalities (-COOH, -OH, amide groups) expected in the macromolecules (10-15 kDa) present in the degradation leachate, can offer further binding/chelating capabilities compared to the small organic proxy ligands with at most bidentate binding.

4.
Dalton Trans ; 51(24): 9432-9444, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35674423

ABSTRACT

The solubility of Ca(OH)2(cr), ß-Ni(OH)2(cr), Nd(OH)3(s) and PuO2(ncr, hyd) was investigated in cement porewater solutions containing glutarate (GTA), α-hydroxyisobutarate (HIBA) and 3-hydroxybutarate (HBA). These ligands were proposed as probable degradation products of UP2W, a polyacrylonitrile-based filter aid used in nuclear power plants. Results obtained in this work are compared with reported solubility data in the presence of iso-saccharinic acid (ISA), a polyhydroxocarboxylic acid resulting from cellulose degradation. None of the investigated proxy ligands shows any significant impact on the solubility of Ca(II), Nd(III) or Pu(IV) in cement porewater solutions. Although the formation of binary complexes M-L (M = Ca(II), Nd(III), An(IV); L = GTA, HIBA, HBA) under acidic conditions is described in the literature, these organic ligands cannot outcompete hydrolysis under hyperalkaline conditions. GTA, HIBA and HBA induce a slight increase in the solubility of ß-Ni(OH)2(cr) at [L]tot = 0.1 M. This observation supports the formation of stable Ni(II)-GTA, -HIBA and -HBA complexes in hyperalkaline conditions, although the exact stoichiometry of these complexes remains unknown. The comparison of these results with solubility data in the presence of ISA confirms the stronger complexation properties of the latter ligand. Even though HIBA and HBA are carboxylic acids containing one alcohol group, this comparison shows that additional alcohol groups are required to efficiently chelate the metal ion and outcompete hydrolysis. This conclusion is supported by DFT calculations on the Pu(IV)-OH-L systems (L = GTA, HIBA and HBA), which indicate that the complexation with the proxy ligands takes places through the carboxylate group. XRD of selected solid phases after equilibration with proxy ligands at [L]tot = 0.1 M confirms that Ca(II), Ni(II), Nd(III) and Pu(IV) starting solid materials remained mostly unaltered in the course of the experiments. However, the presence of new XRD features suggests the possible formation of secondary phases. These results allow assessment of the effect of the proposed proxy ligands on the solubility of key radionuclides and metal ions in cementitious systems relevant for low and intermediate level waste, and feed into on-going sorption studies evaluating the impact of UP2W degradation products on the uptake of radionuclides by cement.

5.
Chemosphere ; 282: 131094, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34470157

ABSTRACT

Beryllium has applications in fission and fusion reactors, and it is present in specific streams of radioactive waste. Accordingly, the environmental mobility of beryllium needs to be assessed in the context of repositories for nuclear waste. Although cement is widely used in these facilities, Be(II) uptake by cementitious materials was not previously investigated and was hence assumed negligible. Sorption experiments were performed under Ar-atmosphere. Ordinary Portland cement, low pH cement, calcium silicate hydrated (C-S-H) phases and the model system TiO2 were investigated. Sorption kinetics, sorption isotherms and distribution ratios (Rd, in kg⋅L-1) were determined for these systems. Molecular dynamics were used to characterize the surface processes driving Be(II) uptake. A strong uptake (5 ≤ log Rd ≤ 7) is quantified for all investigated cementitious systems. Linear sorption isotherms are observed over three orders of magnitude in [Be(II)]aq, confirming that the uptake is controlled by sorption processes and that solubility phenomena is not relevant within the investigated conditions. The analogous behaviour observed for cement and C-S-H support that the latter are the main sink of beryllium. The two step sorption kinetics is explained by a fast surface complexation process, followed by the slow incorporation of Be(II) in C-S-H. Molecular dynamics indicate that Be(OH)3- and Be(OH)42- are sorbed to the C-S-H surface through Ca-bridges. This work provides a comprehensive quantitative and mechanistic description of Be(II) uptake by cementitious materials, whose retention properties can be now reliably assessed for a wide range of boundary conditions of relevance in nuclear waste disposal.


Subject(s)
Radioactive Waste , Refuse Disposal , Beryllium , Construction Materials , Radioactive Waste/analysis , Solubility
6.
Dalton Trans ; 49(5): 1570-1581, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31934703

ABSTRACT

The interaction of Np(v) with borate was investigated in 0.1-5.0 M NaCl and 0.25-4.5 M MgCl2 solutions with 7.2 ≤ pHm ≤ 10.0 (pHm = -log[H+]) and 0.004 M ≤ [B]tot ≤ 0.16 M. Experiments were performed under an Ar-atmosphere at T = (22 ± 2) °C using a combination of under- and oversaturation solubility experiments, NIR spectroscopy, and extensive solid phase characterization. A bathochromic shift (≈5 nm) in the Np(v) band at λ = 980 nm indicates the formation of weak Np(v)-borate complexes under mildly alkaline pHm-conditions. The identification of an isosbestic point supports the formation of a single Np(v)-borate species in dilute MgCl2 systems, whereas a more complex aqueous speciation (eventually involving the formation of several Np(v)-borate species) is observed in concentrated MgCl2 solutions. The solubility of freshly prepared NpO2OH(am) remained largely unaltered in NaCl and MgCl2 solutions with [B]tot = 0.04 M within the timeframe of this study (t ≤ 300 days). At [B]tot = 0.16 M, a kinetically hindered but very significant drop in the solubility of Np(v) (3-4 log10-units, compared to borate-free systems) was observed in NaCl and dilute MgCl2 solutions with pHm ≤ 9. The drop in the solubility was accompanied by a clear change in the colour of the solid phase (from green to white-greyish). XRD and TEM analyses showed that the amorphous NpO2OH(am) "starting material" transformed into crystalline solid phases with similar XRD patterns in NaCl and MgCl2 systems. XPS, SEM-EDS and EXAFS further indicated that borate and Na/Mg participate stoichiometrically in the formation of such solid phases. Additional undersaturation solubility experiments using the newly formed Na-Np(v)-borate(cr) and Mg-Np(v)-borate(cr) compounds further confirmed the low solubility ([Np(v)]aq ≈ 10-6-10-7 M) of such solid phases in mildly alkaline pHm-conditions. The formation of these solid phases represents a previously unreported retention mechanism for the highly mobile Np(v) under boundary conditions (pHm, [B]tot, ionic strength) of relevance to certain repository concepts for nuclear waste disposal.

7.
Dalton Trans ; 47(12): 4377-4392, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29497735

ABSTRACT

The solubility of 99Tc(iv) was investigated in dilute to concentrated carbonate solutions (0.01 M ≤ Ctot≤ 1.0 M, with Ctot = [HCO3-] + [CO32-]) under systematic variation of ionic strength (I = 0.3-5.0 M NaHCO3-Na2CO3-NaCl-NaOH) and pHm (-log[H+] = 8.5-14.5). Strongly reducing conditions (pe + pHm≈ 2) were set with Sn(ii). Carbonate enhances the solubility of Tc(iv) in alkaline conditions by up to 3.5 log10-units compared to carbonate-free systems. Solvent extraction and XANES confirmed that Tc was kept as +IV during the timeframe of the experiments (≤ 650 days). Solid phase characterization performed by XAFS, XRD, SEM-EDS, chemical analysis and TG-DTA confirmed that TcO2·0.6H2O(am) controls the solubility of Tc(iv) under the conditions investigated. Slope analysis of the solubility data in combination with solid/aqueous phase characterization and DFT calculations indicate the predominance of the species Tc(OH)3CO3- at pHm≤ 11 and Ctot≥ 0.01 M, for which thermodynamic and activity models are derived. Solubility data obtained above pHm≈ 11 indicates the formation of previously unreported Tc(iv)-carbonate species, possibly Tc(OH)4CO32-, although the likely formation of additional complexes prevents deriving a thermodynamic model valid for this pHm-region. This work provides the most comprehensive thermodynamic dataset available for the system Tc4+-Na+-Cl--OH--HCO3--CO32--H2O(l) valid under a range of conditions relevant for nuclear waste disposal.

8.
J Contam Hydrol ; 102(3-4): 217-27, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18992962

ABSTRACT

Isosaccharinic (ISA) and gluconic acids (GLU) are polyhydroxy carboxylic compounds showing a high affinity to metal complexation. Both organic ligands are expected in the cementitious environments usually considered for the disposal of low- and intermediate-level radioactive wastes. The hyperalkaline conditions imposed by cementitious materials contribute to the formation of ISA through cellulose degradation, whereas GLU is commonly used as a concrete additive. Despite the high stability attributed to ISA/GLU complexes of tetravalent actinides, the number and reliability of available experimental studies is still limited. This work aims at providing a general and comprehensive overview of the state of the art regarding Th, U(IV), Np(IV), and Pu(IV) complexes with ISA and GLU. In the presence of ISA/GLU concentrations in the range 10(-5)-10(-2) M and absence of calcium, An(IV)(OH)x(L)y complexes (An(IV)=Th, U(IV), Np(IV), Pu(IV); L=ISA, GLU) are expected to dominate the aqueous speciation of tetravalent actinides in the alkaline pH range. There is a moderate agreement among their stability, although the stoichiometry of certain An(IV)-GLU complexes is still ill-defined. Under hyperalkaline conditions and presence of calcium, the species CaTh(OH)4(L)2(aq) has been described for both ISA and GLU, and similar complexes may be expected to form with other tetravalent actinides. In the present work, the available thermodynamic data for An(IV)-ISA/GLU complexes have been reviewed and re-calculated to ensure the internal consistency of the stability constants assessed. Further modelling exercises, estimations based on Linear Free-Energy Relationships (LFER) among tetravalent actinides, as well as direct analogies between ISA and GLU complexes have also been performed. This approach has led to the definition of a speciation scheme for the complexes of Th, U(IV), Np(IV) and Pu(IV) with ISA and GLU forming in alkaline to hyperalkaline pH conditions, both in the absence and presence of calcium.


Subject(s)
Actinoid Series Elements/chemistry , Gluconates/chemistry , Sugar Acids/chemistry , Neptunium/chemistry , Plutonium/chemistry , Radioactive Waste , Refuse Disposal/methods , Thorium/chemistry , Titanium/chemistry , Uranium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...