Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 23(4): e54199, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35253970

ABSTRACT

The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1,000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants.


Subject(s)
COVID-19 Drug Treatment , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Drug Resistance , Humans , Pandemics , Protein Binding , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34507995

ABSTRACT

ASCT2 (SLC1A5) is a sodium-dependent neutral amino acid transporter that controls amino acid homeostasis in peripheral tissues. In cancer, ASCT2 is up-regulated where it modulates intracellular glutamine levels, fueling cell proliferation. Nutrient deprivation via ASCT2 inhibition provides a potential strategy for cancer therapy. Here, we rationally designed stereospecific inhibitors exploiting specific subpockets in the substrate binding site using computational modeling and cryo-electron microscopy (cryo-EM). The final structures combined with molecular dynamics simulations reveal multiple pharmacologically relevant conformations in the ASCT2 binding site as well as a previously unknown mechanism of stereospecific inhibition. Furthermore, this integrated analysis guided the design of a series of unique ASCT2 inhibitors. Our results provide a framework for future development of cancer therapeutics targeting nutrient transport via ASCT2, as well as demonstrate the utility of combining computational modeling and cryo-EM for solute carrier ligand discovery.


Subject(s)
Amino Acid Transport System ASC/antagonists & inhibitors , Binding, Competitive , Computational Chemistry , Cryoelectron Microscopy/methods , Glutamine/metabolism , Pharmaceutical Preparations/administration & dosage , Amino Acid Transport System ASC/metabolism , Binding Sites , Drug Design , Humans , Minor Histocompatibility Antigens/metabolism , Molecular Docking Simulation , Pharmaceutical Preparations/chemistry , Protein Binding , Protein Domains , Protein Structure, Tertiary , Structure-Activity Relationship
3.
Commun Biol ; 4(1): 751, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140623

ABSTRACT

It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s-1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


Subject(s)
Aspartic Acid/metabolism , Biological Transport/physiology , Excitatory Amino Acid Transporter 3/metabolism , Sodium/metabolism , Excitatory Amino Acid Transporter 3/genetics , Proteolipids/metabolism , Pyrococcus horikoshii/genetics , Pyrococcus horikoshii/metabolism , Thermococcus/genetics , Thermococcus/metabolism
4.
Biochem Soc Trans ; 48(3): 1227-1241, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32369548

ABSTRACT

Membrane transporters are integral membrane proteins that mediate the passage of solutes across lipid bilayers. These proteins undergo conformational transitions between outward- and inward-facing states, which lead to alternating access of the substrate-binding site to the aqueous environment on either side of the membrane. Dozens of different transporter families have evolved, providing a wide variety of structural solutions to achieve alternating access. A sub-set of structurally diverse transporters operate by mechanisms that are collectively named 'elevator-type'. These transporters have one common characteristic: they contain a distinct protein domain that slides across the membrane as a rigid body, and in doing so it 'drags" the transported substrate along. Analysis of the global conformational changes that take place in membrane transporters using elevator-type mechanisms reveals that elevator-type movements can be achieved in more than one way. Molecular dynamics simulations and experimental data help to understand how lipid bilayer properties may affect elevator movements and vice versa.


Subject(s)
Lipid Bilayers/metabolism , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Allosteric Site , Bile Acids and Salts/chemistry , Biological Transport , Humans , Kinetics , Lipids/chemistry , Protein Domains , Protein Folding , Receptors, Somatostatin/metabolism
5.
Nat Commun ; 10(1): 3427, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366933

ABSTRACT

The human Alanine Serine Cysteine Transporter 2 (ASCT2) is a neutral amino acid exchanger that belongs to the solute carrier family 1 (SLC1A). SLC1A structures have revealed an elevator-type mechanism, in which the substrate is translocated across the cell membrane by a large displacement of the transport domain, whereas a small movement of hairpin 2 (HP2) gates the extracellular access to the substrate-binding site. However, it has remained unclear how substrate binding and release is gated on the cytoplasmic side. Here, we present an inward-open structure of the human ASCT2, revealing a hitherto elusive SLC1A conformation. Strikingly, the same structural element (HP2) serves as a gate in the inward-facing as in the outward-facing state. The structures reveal that SLC1A transporters work as one-gate elevators. Unassigned densities near the gate and surrounding the scaffold domain, may represent potential allosteric binding sites, which could guide the design of lipidic-inhibitors for anticancer therapy.


Subject(s)
Amino Acid Transport System ASC/metabolism , Membrane Transport Proteins/metabolism , Minor Histocompatibility Antigens/metabolism , Amino Acid Sequence , Binding Sites/genetics , Cryoelectron Microscopy , Humans , Protein Domains , Protein Structure, Secondary , Protein Transport/physiology , Substrate Specificity
6.
Nat Struct Mol Biol ; 25(6): 515-521, 2018 06.
Article in English | MEDLINE | ID: mdl-29872227

ABSTRACT

Human ASCT2 belongs to the SLC1 family of secondary transporters and is specific for the transport of small neutral amino acids. ASCT2 is upregulated in cancer cells and serves as the receptor for many retroviruses; hence, it has importance as a potential drug target. Here we used single-particle cryo-EM to determine a structure of the functional and unmodified human ASCT2 at 3.85-Å resolution. ASCT2 forms a homotrimeric complex in which each subunit contains a transport and a scaffold domain. Prominent extracellular extensions on the scaffold domain form the predicted docking site for retroviruses. Relative to structures of other SLC1 members, ASCT2 is in the most extreme inward-oriented state, with the transport domain largely detached from the central scaffold domain on the cytoplasmic side. This domain detachment may be required for substrate binding and release on the intracellular side of the membrane.


Subject(s)
Amino Acid Transport System ASC/chemistry , Cryoelectron Microscopy/methods , Minor Histocompatibility Antigens/chemistry , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/ultrastructure , Binding Sites , Crystallography, X-Ray , Glutamine/metabolism , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/ultrastructure , Pichia/genetics , Protein Conformation , Protein Domains , Protein Folding , Protein Transport , Proteolipids/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
7.
J Gen Physiol ; 150(1): 41-50, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29203477

ABSTRACT

Membrane transporters of the bacterial pyridine nucleotide uptake (Pnu) family mediate the uptake of various B-type vitamins. For example, the PnuT transporters have specificity for vitamin B1 (thiamine). It has been hypothesized that Pnu transporters are facilitators that allow passive transport of the vitamin substrate across the membrane. Metabolic trapping by phosphorylation would then lead to accumulation of the transported substrates in the cytoplasm. However, experimental evidence for such a transport mechanism is lacking. Here, to determine the mechanism of thiamine transport, we purify PnuTSw from Shewanella woodyi and reconstitute it in liposomes to determine substrate binding and transport properties. We show that the electrochemical gradient of thiamine solely determines the direction of transport, consistent with a facilitated diffusion mechanism. Further, PnuTSw can bind and transport thiamine as well as the thiamine analogues pyrithiamine and oxythiamine, but does not recognize the phosphorylated derivatives thiamine monophosphate and thiamine pyrophosphate as substrates, consistent with a metabolic trapping mechanism. Guided by the crystal structure of the homologous nicotinamide riboside transporter PnuC, we perform mutagenesis experiments, which reveal residues involved in substrate binding and gating. The facilitated diffusion mechanism of transport used by PnuTSw contrasts sharply with the active transport mechanisms used by other bacterial thiamine transporters.


Subject(s)
Bacterial Proteins/metabolism , Membrane Transport Proteins/metabolism , Shewanella/metabolism , Thiamine/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Diffusion , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Protein Binding , Thiamine/analogs & derivatives
8.
Gene ; 590(1): 177-85, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27328454

ABSTRACT

Intermedin or adrenomedullin 2 is a set of calcitonin-related peptides with a putative tumor angiogenesis promoting activity that are formed by proteolytic processing of the ADM2 gene product. It has been proposed that the ADM2 gene is regulated by the estrogen response element (ERE) and hypoxia response elements (HRE) found within its promoter region. In the present study we reveal a functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition. We show that the ADM2 gene is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR). The upregulation of ADM2 mRNA could be prevented by the pharmacological ISR inhibitor ISRIB and by the downregulation of ATF4 with specific shRNA, while ectopic expression of ATF4 cDNA resulted in a notable increase in ADM2 gene transcription. A potential ATF4-binding site was identified in the coding region of the ADM2 gene and the requirement of this site during the ATF4-mediated ADM2 gene promoter activation was validated by the luciferase reporter assay. Mutagenesis of the putative ATF4-response element prevented the induction of luciferase activity in response to ATF4 overproduction, as well as in response to mitochondrial electron transfer chain inhibition by piericidin A and ER stress induction by tunicamycin and brefeldin A. Since ADM2 was shown to inhibit ATF4 expression during myocardial ER stress, a feedback mechanism could be proposed for the ADM2 regulation under ER stress conditions.


Subject(s)
Activating Transcription Factor 4/genetics , Feedback, Physiological , Peptide Hormones/genetics , RNA, Messenger/genetics , Transcription, Genetic , Unfolded Protein Response , Activating Transcription Factor 4/antagonists & inhibitors , Activating Transcription Factor 4/metabolism , Binding Sites , Brefeldin A/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Gene Expression Regulation , Gene Ontology , HCT116 Cells , HeLa Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Sequence Annotation , Peptide Hormones/chemistry , Peptide Hormones/metabolism , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Pyridines/pharmacology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Response Elements , Signal Transduction , Tunicamycin/pharmacology
9.
Cell Cycle ; 15(1): 64-71, 2016.
Article in English | MEDLINE | ID: mdl-26771712

ABSTRACT

We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments.


Subject(s)
Activating Transcription Factor 4/biosynthesis , Mitochondria/metabolism , Nuclear Proteins/biosynthesis , Activating Transcription Factor 4/genetics , Gene Expression Regulation , HCT116 Cells , HeLa Cells , Humans , Mitochondria/genetics , Nuclear Proteins/genetics , Transcriptional Activation/physiology , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...