Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 338: 111922, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952767

ABSTRACT

One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.


Subject(s)
Antioxidants , Pyruvaldehyde , Reactive Oxygen Species/metabolism , Pyruvaldehyde/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Plants/metabolism , Oxidation-Reduction , Homeostasis
2.
Photosynth Res ; 154(3): 233-258, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36309625

ABSTRACT

As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.


Subject(s)
Malate Dehydrogenase , NAD , Malate Dehydrogenase/metabolism , NAD/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis/genetics , Plants/metabolism , Protein Isoforms , Crops, Agricultural/enzymology , Agriculture
3.
Environ Microbiol ; 24(6): 2817-2836, 2022 06.
Article in English | MEDLINE | ID: mdl-34435423

ABSTRACT

Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.


Subject(s)
Arabidopsis , Pyruvaldehyde , Arabidopsis/genetics , Plants , Salt Stress , Salt Tolerance , Stress, Physiological/physiology
4.
Physiol Mol Biol Plants ; 27(10): 2407-2420, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744374

ABSTRACT

Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.

5.
Front Plant Sci ; 12: 707286, 2021.
Article in English | MEDLINE | ID: mdl-34381483

ABSTRACT

Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.

7.
Front Plant Sci ; 8: 2265, 2017.
Article in English | MEDLINE | ID: mdl-29472934

ABSTRACT

Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR) and sulfite reductase (SiR); it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N) and sulfur (S) assimilation. Further, uroporphyrinogen III methyltransferase (UPM1), responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR (NII) and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR). We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than the wild type (WT). Conversely, the antisense plants had lower protein content and photosynthetic efficiency in N-deficient environment. Our results clearly demonstrate that upregulation of siroheme biosynthesis leads to increased nitrogen and sulfur assimilation, and this imparts tolerance to nitrogen and sulfur deficiency in Arabidopsis thaliana plants.

8.
Physiol Mol Biol Plants ; 22(3): 351-359, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27729721

ABSTRACT

Uroporphyrinogen III methyl transferase (UPM1) and Sirohydrochlorin ferrochelatase (SIRB) are the important genes involved in the biosynthesis of siroheme, the prosthetic group of nitrite reductases (NiR) and sulfite reductases (SiR) involved in nitrogen and sulfur assimilation. Both UPM1 and SIRB could be potential candidate genes targeted for sustainable agriculture especially in N-deficient soil. The phylogenetic analysis revealed that these genes are highly conserved among algae, bryophytes and vascular plants including dicots and monocots. The Arabidopsis proteins UPM1 and SIRB have close similarity with Camelina sativa followed by Brassica napus, Brassica rapa, and Brassica oleracea of the family brassicaceae. The tissue specific expression studies revealed that both the gene are expressed in stem, flower and silique and have highest expression in leaves where the protein content is quite high. The in silico promoter analysis revealed the presence of several light-responsive elements like GATA box, G box, I box, SORLIP2, SORLIP5, SORLREP3 and SORLREP4. Therefore, expression of both the genes was minimal in etiolated seedlings and was upregulated in light. Photo-regulation of transcript abundance of UPM1 and SIRB involved in the biosynthesis of siroheme the cofactor involved in 6 electron reduction of NO2- and SO32- by NiR and SiR is crucial as the gene expression of latter two enzymes along with other N and S assimilatory enzymes are also modulated by light.

SELECTION OF CITATIONS
SEARCH DETAIL
...