Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 90(5): 2102-2115, 2023 11.
Article in English | MEDLINE | ID: mdl-37345719

ABSTRACT

PURPOSE: The phase of a MRI signal is used to encode the velocity of blood flow. Phase unwrapping artifacts may appear when aiming to improve the velocity-to-noise ratio (VNR) of the measured velocity field. This study aims to compare various unwrapping algorithms on ground-truth synthetic data generated using computational fluid dynamics (CFD) simulations. METHODS: We compare four different phase unwrapping algorithms on two different synthetic datasets of four-dimensional flow MRI and 26 datasets of 2D PC-MRI acquisitions including the ascending and descending aorta. The synthetic datasets are constructed using CFD simulations of an aorta with a coarctation, with different levels of spatiotemporal resolutions and noise. The error of the unwrapped images was assessed by comparison against the ground truth velocity field in the synthetic data and dual-VENC reconstructions in the in vivo data. RESULTS: Using the unwrapping algorithms, we were able to remove aliased voxels in the data almost entirely, reducing the L2-error compared to the ground truth by 50%-80%. Results indicated that the best choice of algorithm depend on the spatiotemporal resolution and noise level of the dataset. Temporal unwrapping is most successful with a high temporal and low spatial resolution ( δ t = 30 $$ \delta t=30 $$ ms, h = 2 . 5 $$ h=2.5 $$ mm), reducing the L2-error by 70%-85%, while Laplacian unwrapping performs better with a lower temporal or better spatial resolution ( δ t = 60 $$ \delta t=60 $$ ms, h = 1 . 5 $$ h=1.5 $$ mm), especially for signal-to-noise ratio (SNR) 12 as opposed to SNR 15, with an error reduction of 55%-85% compared to the 50%-75% achieved by the Temporal method. The differences in performance between the methods are statistically significant. CONCLUSIONS: The temporal method and spatiotemporal Laplacian method provide the best results, with the spatiotemporal Laplacian being more robust. However, single- V enc $$ {V}_{\mathrm{enc}} $$ methods only situationally and not generally reach the performance of dual- V enc $$ {V}_{\mathrm{enc}} $$ unwrapping methods.


Subject(s)
Aortic Coarctation , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Aorta/diagnostic imaging , Signal-To-Noise Ratio , Algorithms , Aortic Coarctation/diagnostic imaging , Reproducibility of Results , Blood Flow Velocity , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...