Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Breast Cancer ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38997857

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS: We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS: In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION: FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.

2.
Braz J Microbiol ; 52(3): 1287-1302, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34002353

ABSTRACT

There is increasing evidence showing positive association between changes in oral microbiome and the occurrence of oral squamous cell carcinoma (OSCC). Alcohol- and nicotine-related products can induce microbial changes but are still unknown if these changes are related to cancerous lesion sites. In an attempt to understand how these changes can influence the OSCC development and maintenance, the aim of this study was to investigate the oral microbiome linked with OSCC as well as to identify functional signatures and associate them with healthy or precancerous and cancerous sites. Our group used data of oral microbiomes available in public repositories. The analysis included data of oral microbiomes from electronic cigarette users, alcohol consumers, and precancerous and OSCC samples. An R-based pipeline was used for taxonomic and functional prediction analysis. The Streptococcus spp. genus was the main class identified in the healthy group. Haemophilus spp. predominated in precancerous lesions. OSCC samples revealed a higher relative abundance compared with the other groups, represented by an increased proportion of Fusobacterium spp., Prevotella spp., Haemophilus spp., and Campylobacter spp. Venn diagram analysis showed 52 genera exclusive of OSCC samples. Both precancerous and OSCC samples seemed to present a specific associated functional pattern. They were menaquinone-dependent protoporphyrinogen oxidase pattern enhanced in the former and both 3',5'-cyclic-nucleotide phosphodiesterase (purine metabolism) and iron(III) transport system ATP-binding protein enhanced in the latter. We conclude that although precancerous and OSCC samples present some differences on microbial profile, both microbiomes act as "iron chelators-like" potentially contributing to tumor growth.


Subject(s)
Carcinoma, Squamous Cell , Iron/metabolism , Microbiota , Mouth Neoplasms , Tumor Microenvironment , Alcohol Drinking , Carcinoma, Squamous Cell/microbiology , Electronic Nicotine Delivery Systems , Ferric Compounds/metabolism , Humans , Mouth Neoplasms/microbiology , Precancerous Conditions/microbiology
3.
BMC Cancer ; 18(1): 90, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29357840

ABSTRACT

BACKGROUND: FAM3B/PANDER is a novel cytokine-like protein that induces apoptosis in insulin-secreting beta-cells. Since in silico data revealed that FAM3B can be expressed in prostate tumors, we evaluated the putative role of this cytokine in prostate tumor progression. METHODS: FAM3B expression was analyzed by quantitative PCR in tumor tissue clinical samples and prostate tumor cell lines. Culture growth and viability of DU145 cell line were evaluated after treatment with either exogenous FAM3B protein obtained from conditioned media (CM) of 293 T cells overexpressing FAM3B or a recombinant FAM3B protein produced in a bacterial host. DU145 cells overexpressing FAM3B protein were produced by lentiviral-mediated transduction of full-length FAM3B cDNA. Cell viability and apoptosis were analyzed in DU145/FAM3B cells after treatment with several cell death inducers, such as TNF-alpha, staurosporine, etoposide, camptothecin, and serum starvation conditions. Anchorage-independent growth in soft agarose assay was used to evaluate in vitro tumorigenicity. In vivo tumorigenicity and invasiveness were evaluated by tumor xenograft growth in nude mice. RESULTS: We observed an increase in FAM3B expression in prostate tumor samples when compared to normal tissues. DU145 cell viability and survival increased after exogenous treatment with recombinant FAM3B protein or FAM3B-secreted protein. Overexpression of FAM3B in DU145 cells promoted inhibition of DNA fragmentation and phosphatidylserine externalization in a time and dose-dependent fashion, upon apoptosis triggered by TNF-alpha. These events were accompanied by increased gene expression of anti-apoptotic Bcl-2 and Bcl-XL, decreased expression of pro-apoptotic Bax and diminished caspase-3, -8 and -9 proteolytic activities. Furthermore, inhibition of Bcl-2 anti-apoptotic family proteins with small molecules antagonists decreases protective effects of FAM3B in DU145 cells. When compared to the respective controls, cells overexpressing FAM3B displayed a decreased anchorage- independent growth in vitro and increased tumor growth in xenografted nude mice. The immunohistochemistry analysis of tumor xenografts revealed a similar anti-apoptotic phenotype displayed by FAM3B-overexpressing tumor cells. CONCLUSIONS: Taken together, by activating pro-survival mechanisms FAM3B overexpression contributes to increased resistance to cell death and tumor growth in nude mice, highlighting a putative role for this cytokine in prostate cancer progression.


Subject(s)
Apoptosis/genetics , Biomarkers, Tumor/genetics , Cytokines/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Animals , Apoptosis/drug effects , Camptothecin/administration & dosage , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/genetics , Humans , Male , Mice , Prostate/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/genetics , Xenograft Model Antitumor Assays , bcl-X Protein/genetics
4.
Neurosci Lett ; 636: 218-224, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27984197

ABSTRACT

The hippocampus is a brain region that is rich in nicotinic acetylcholine receptors (nAChRs), especially the α7 subtype. The hippocampus is severely affected in disorders that have a neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Previous studies demonstrated both in vivo and in vitro that nicotine inhibits immunological responses, including those that are triggered by the inflammatory agent lipopolysaccharide (LPS), the endotoxin of Gram-negative bacteria. The present study investigated whether chronically administered nicotine interferes with the nuclear binding of nuclear factor-κB (NF-κB) and the expression of LPS-induced inflammatory response genes. The results indicated that chronic nicotine administration (0.1mg/kg, s.c., 14days) inhibited the LPS-induced nuclear binding of NF-κB and mRNA expression levels of Tnf, Il1b, Nos2, and Tlr4. The presence of both the selective α7 nAChR antagonist methyllycaconitine (MLA; 5.0mg/kg i.p., 14days) and the nonselective nAChR antagonist mecamylamine (Meca; 1.0mg/kg, s.c., 14days) reversed the inhibitory effects of nicotine. These results suggest that the chronic activation of α7- and αxßy-containing nAChRs reduces acute inflammatory responses in the brain.


Subject(s)
Hippocampus/drug effects , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacology , Animals , Hippocampus/metabolism , Inflammation/metabolism , Male , Mecamylamine/pharmacology , Rats, Wistar , Receptors, Nicotinic/metabolism
5.
J Bioinform Comput Biol ; 6(5): 961-79, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18942161

ABSTRACT

In cells, molecular networks such as gene regulatory networks are the basis of biological complexity. Therefore, gene regulatory networks have become the core of research in systems biology. Understanding the processes underlying the several extracellular regulators, signal transduction, protein-protein interactions, and differential gene expression processes requires detailed molecular description of the protein and gene networks involved. To understand better these complex molecular networks and to infer new regulatory associations, we propose a statistical method based on vector autoregressive models and Granger causality to estimate nonlinear gene regulatory networks from time series microarray data. Most of the models available in the literature assume linearity in the inference of gene connections; moreover, these models do not infer directionality in these connections. Thus, a priori biological knowledge is required. However, in pathological cases, no a priori biological information is available. To overcome these problems, we present the nonlinear vector autoregressive (NVAR) model. We have applied the NVAR model to estimate nonlinear gene regulatory networks based entirely on gene expression profiles obtained from DNA microarray experiments. We show the results obtained by NVAR through several simulations and by the construction of three actual gene regulatory networks (p53, NF-kappaB, and c-Myc) for HeLa cells.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation/physiology , Models, Biological , Proteome/metabolism , Signal Transduction/physiology , Computer Simulation , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL