Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Hematol ; 99(2): 182-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782758

ABSTRACT

Luspatercept, a ligand-trapping fusion protein, binds select TGF-ß superfamily ligands implicated in thalassemic erythropoiesis, promoting late-stage erythroid maturation. Luspatercept reduced transfusion burden in the BELIEVE trial (NCT02604433) of 336 adults with transfusion-dependent thalassemia (TDT). Analysis of biomarkers in BELIEVE offers novel physiological and clinical insights into benefits offered by luspatercept. Transfusion iron loading rates decreased 20% by 1.4 g (~7 blood units; median iron loading rate difference: -0.05 ± 0.07 mg Fe/kg/day, p< .0001) and serum ferritin (s-ferritin) decreased 19.2% by 269.3 ± 963.7 µg/L (p < .0001), indicating reduced macrophage iron. However, liver iron content (LIC) did not decrease but showed statistically nonsignificant increases from 5.3 to 6.7 mg/g dw. Erythropoietin, growth differentiation factor 15, soluble transferrin receptor 1 (sTfR1), and reticulocytes rose by 93%, 59%, 66%, and 112%, respectively; accordingly, erythroferrone increased by 51% and hepcidin decreased by 53% (all p < .0001). Decreased transfusion with luspatercept in patients with TDT was associated with increased erythropoietic markers and decreasing hepcidin. Furthermore, s-ferritin reduction associated with increased erythroid iron incorporation (marked by sTfR1) allowed increased erythrocyte marrow output, consequently reducing transfusion needs and enhancing rerouting of hemolysis (heme) iron and non-transferrin-bound iron to the liver. LIC increased in patients with intact spleens, consistent with iron redistribution given the hepcidin reduction. Thus, erythropoietic and hepcidin changes with luspatercept in TDT lower transfusion dependency and may redistribute iron from macrophages to hepatocytes, necessitating the use of concomitant chelator cover for effective iron management.


Subject(s)
Activin Receptors, Type II , Immunoglobulin Fc Fragments , Iron , Recombinant Fusion Proteins , Thalassemia , Adult , Humans , Hepcidins , Erythropoiesis/physiology , Thalassemia/complications , Receptors, Transferrin , Ferritins
2.
Am J Hematol ; 98(3): 533-540, 2023 03.
Article in English | MEDLINE | ID: mdl-36565452

ABSTRACT

Many disorders of iron homeostasis (e.g., iron overload) are associated with the dynamic kinetic profiles of multiple non-transferrin bound iron (NTBI) species, chronic exposure to which is associated with deleterious end-organ effects. Here we discuss the chemical nature of NTBI species, challenges with measuring NTBI in plasma, and the clinical relevance of NTBI exposure based on source (iron overload disorder vs. intravenous iron-carbohydrate complex administration). NTBI is not a single entity but consists of multiple, often poorly characterized species, some of which are kinetically non-exchangeable while others are relatively exchangeable. Prolonged presence of plasma NTBI is associated with excessive tissue iron accumulation in susceptible tissues, with consequences, such as endocrinopathy and heart failure. In contrast, intravenous iron-carbohydrate nanomedicines administration leads only to transient NTBI appearance and lacks evidence for association with adverse clinical outcomes. Assays to measure plasma NTBI are typically technically complex and remain chiefly a research tool. There have been two general approaches to estimating NTBI: capture assays and redox-activity assays. Early assays could not avoid capturing some iron from transferrin, thus overestimating NTBI. By contrast, some later assays may have promoted the donation of NTBI species to transferrin during the assay procedure, potentially underestimating NTBI levels. The levels of transferrin saturation at which NTBI species have been detectable have varied between different methodologies and between patient populations studied.


Subject(s)
Iron Overload , Iron , Humans , Administration, Intravenous , Clinical Relevance , Iron/blood , Iron/chemistry , Iron Overload/diagnosis , Iron Overload/drug therapy , Transferrin/chemistry , Transferrin/metabolism
4.
Haematologica ; 106(11): 2885-2896, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33054113

ABSTRACT

Intravenous iron-carbohydrate complex preparations (IVIPs) are non-interchangeable pro-drugs: their pharmacokinetics (PK) varies determined by semi-crystalline iron core and carbohydrate shell structures, influences pharmacodynamics (PD) and thus efficacy and safety. Examining PK/PD relationships of 3 IVIPs we identify a two-pathway model of transient NTBI generation following single dose administration. 28 hypoferremic non-anemic patients randomized to 200mg iron as ferric carboxymaltose (Fe-carboxymaltose), iron sucrose (Fe-sucrose), iron isomaltoside 1000 (Fe-isomaltoside-1000), n=8/arm, or placebo, n=4, on a 2-week PK/PD study, had samples analysed for total serum iron, IVIP-iron, transferrin-bound iron (TBI) by HPLC-ICP-MS, transferrin saturation (TSAT), serum ferritin (s-Ferritin) by standard methods, non-TBI (NTBI) and hepcidin as published before. IVIP-dependent increases in these parameters returned to baseline in 48-150h, except for s-Ferritin and TSAT. NTBI was low with Fe-isomaltoside-1000 (0.13µM at 8h), rapidly increased with Fe-sucrose (0.8µM at 2h, 1.25µM at 4h), and delayed for Fe-carboxymaltose (0.57µM at 24h). NTBI AUCs were 7-fold greater for Fe-carboxymaltose and Fe-sucrose than for Fe-isomaltoside-1000. Hepcidin peak time varied, but not AUC or mean levels. s-Ferritin levels and AUC were highest for Fe-carboxymaltose and greater than placebo for all IVIPs. We propose 2 mechanisms for the observed NTBI kinetics: rapid and delayed NTBI appearance consistent with direct (circulating IVIP-to-plasma) and indirect (IVIP-to-macrophage-to-plasma) iron release based on IVIP plasma half-life and s-Ferritin dynamics. IVIPs generate different, broadly stability- and PK-dependent, NTBI and s-Ferritin signatures, which may influence iron bioavailability, efficacy and safety. Longer-term studies should link NTBI exposure to subsequent safety and efficacy parameters and potential clinical consequences.


Subject(s)
Anemia, Iron-Deficiency , Hematinics , Ferric Compounds , Ferritins , Humans , Iron/metabolism , Transferrin
5.
Biosci Rep ; 40(5)2020 05 29.
Article in English | MEDLINE | ID: mdl-32426811

ABSTRACT

Elevation of endothelial microparticles (EMPs) play an important role in the progression of inflammation-related vascular diseases such as cardiovascular diseases (CVDs). Thai perilla (Perilla frutescens) nutlets are rich in phenolic compounds and flavonoids that exert potent antioxidant and anti-inflammatory effects. We found that the ethyl acetate (EA) and ethanol (Eth) extracts of Thai perilla nutlets contain phenolic compounds such as luteolin, apigenin, chryseoriol and their glycosides, which exhibit antioxidant activity. The goal of the present study was to investigate the effects of the extracts on endothelial activation and EMPs generation in tumour necrosis factor-α (TNF-α)-induced EA.hy926 cells. We found that TNF-α (10 ng/ml) activated EA.hy926 cells and subsequently generated EMPs. Pre-treatment with the extracts significantly attenuated endothelial activation by decreasing the expression of the intracellular adhesion molecule-1 (ICAM-1) in a dose-dependent manner. Only the Eth extract showed protective effects against overproduction of interleukin-6 (IL-6) in the activated cells. Furthermore, the extracts significantly reduced TNF-α-enhanced EMPs generation in a dose-dependent manner. In conclusion, Thai perilla nutlet extracts, especially the Eth extract, may have potential to protect endothelium against vascular inflammation through the inhibition of endothelial activation and the generation of endothelial microparticles (EMPs).


Subject(s)
Atherosclerosis/drug therapy , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Perilla frutescens/chemistry , Plant Extracts/pharmacology , Atherosclerosis/immunology , Atherosclerosis/pathology , Cell Line , Cell-Derived Microparticles/metabolism , Drug Evaluation, Preclinical , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/cytology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Nuts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
6.
Hematol Oncol Clin North Am ; 32(2): 247-259, 2018 04.
Article in English | MEDLINE | ID: mdl-29458730

ABSTRACT

The relationship between blood transfusion intensity, chelatable iron pools, and extrahepatic iron distribution is described in thalassemia. Risk factors for cardiosiderosis are discussed with particular reference to the balance of transfusional iron loading rate and transferrin-iron utilization rate as marked by plasma levels of soluble transferrin receptors. Low transfusion regimens increase residual erythropoiesis allowing for apotransferrin-dependent clearance of non-transferrin-bound iron species otherwise destined for myocardium. The impact of transfusion rates on chelation dosing required for iron balance is also shown.


Subject(s)
Blood Transfusion , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Iron Overload/etiology , Thalassemia/complications , Biological Transport , Biomarkers , Erythropoiesis , Humans , Iron/metabolism , Iron Overload/metabolism , Iron-Binding Proteins , Protein Binding , Thalassemia/metabolism , Thalassemia/therapy
7.
Haematologica ; 102(10): 1640-1649, 2017 10.
Article in English | MEDLINE | ID: mdl-28642302

ABSTRACT

Cardiosiderosis is a leading cause of mortality in transfusion-dependent thalassemias. Plasma non-transferrin-bound iron and its redox-active component, labile plasma iron, are key sources of iron loading in cardiosiderosis. Risk factors were identified in 73 patients with or without cardiosiderosis. Soluble transferrin receptor-1 levels were significantly lower in patients with cardiosiderosis (odds ratio 21). This risk increased when transfusion-iron loading rates exceeded the erythroid transferrin uptake rate (derived from soluble transferrin receptor-1) by >0.21 mg/kg/day (odds ratio 48). Labile plasma iron was >3-fold higher when this uptake rate threshold was exceeded, but non-transferrin-bound iron and transferrin saturation were comparable. The risk of cardiosiderosis was decreased in patients with low liver iron, ferritin and labile plasma iron, or high bilirubin, reticulocyte counts or hepcidin. We hypothesized that high erythroid transferrin uptake rate decreases cardiosiderosis through increased erythroid re-generation of apotransferrin. To test this, iron uptake and intracellular reactive oxygen species were examined in HL-1 cardiomyocytes under conditions modeling transferrin effects on non-transferrin-bound iron speciation with ferric citrate. Intracellular iron and reactive oxygen species increased with ferric citrate concentrations especially when iron-to-citrate ratios exceeded 1:100, i.e. conditions favoring kinetically labile monoferric rather than oligomer species. Excess iron-binding equivalents of apotransferrin inhibited iron uptake and decreased both intracellular reactive oxygen species and labile plasma iron under conditions favoring monoferric species. In conclusion, high transferrin iron utilization, relative to the transfusion-iron load rate, decreases the risk of cardiosiderosis. A putative mechanism is the transient re-generation of apotransferrin by an active erythron, rapidly binding labile plasma iron-detectable ferric monocitrate species.


Subject(s)
Apoproteins/blood , Erythropoiesis , Hemosiderosis/etiology , Iron/metabolism , Myocardium/metabolism , Thalassemia/blood , Thalassemia/complications , Adolescent , Adult , Animals , Biomarkers , Blood Transfusion , Cell Line , Child , Child, Preschool , Citric Acid/metabolism , Cohort Studies , Hemosiderosis/diagnosis , Humans , Infant , Iron/blood , Mice , Middle Aged , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Protein Binding , Risk Factors , Thalassemia/therapy , Transferrin/metabolism , Young Adult
8.
Transl Res ; 177: 19-30.e5, 2016 11.
Article in English | MEDLINE | ID: mdl-27344508

ABSTRACT

Nontransferrin-bound iron (NTBI) is a heterogeneously speciated plasma iron, typically detectable when transferrin saturation (TfSat) exceeds 75%. Here, we examine factors affecting NTBI levels by a recently discovered direct chelator-based (CP851) fluorescent bead-linked flow-cytometric assay (bead-NTBI), compared with the established indirect nitrilotriacetate (NTA) assay in 122 iron-overloaded patients, including 64 on recent iron chelation therapy and 13 healthy volunteers. Both methods correlated (r = 0.57, P < 0.0001) but with low agreement, attributable to 2 major factors: (1) the NTA method, unlike the bead method, is highly dependent on TfSat, with NTBI under-estimation at low TfSat and over-estimation once Tf is saturated, (2) the bead method detects <3-fold higher values than the NTA assay in patients on recent deferiprone-containing chelation due to greater detection of chelate complexes but lower values for patients on deferasirox. The optimal timing of sample collection relative to chelation dosing requires further study. Patients with splenectomy, high-storage iron, and increased erythropoiesis had greater discrepancy between assays, consistent with differential access by both methods to the NTBI pools associated with these clinical variables. The bead-NTBI assay has advantages over the NTA assay, being less dependent on TfSat, hence of less tendency for false-negative or false-positive values at low and high TfSat, respectively.


Subject(s)
Biological Assay/methods , Iron/metabolism , Microspheres , Transferrin/metabolism , Fluorescence , Humans , Iron Chelating Agents/pharmacology , Nitrilotriacetic Acid/metabolism , Regression Analysis
9.
J Cardiovasc Magn Reson ; 16: 40, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24915987

ABSTRACT

BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.


Subject(s)
Hemosiderosis/diagnosis , Iron/analysis , Liver/chemistry , Liver/pathology , Magnetic Resonance Imaging/standards , Algorithms , Benzoates/therapeutic use , Biomarkers/analysis , Biopsy , Calibration , Deferasirox , Hemosiderosis/drug therapy , Hemosiderosis/etiology , Hemosiderosis/metabolism , Hemosiderosis/pathology , Humans , Image Interpretation, Computer-Assisted , Iron Chelating Agents/therapeutic use , Least-Squares Analysis , Linear Models , Liver/drug effects , Observer Variation , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Transfusion Reaction , Triazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...