ABSTRACT
Background: Suicide is a significant public health problem influenced by various risk factors, including dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis. Zinc (Zn), essential for pituitary function in hormone synthesis and release, has been linked to suicide, with studies noting reduced serum levels and altered brain transport mechanisms. Despite Zn's crucial role in pituitary function and its involvement in suicidal behavior, information on pituitary Zn in suicide is scarce. Tumor cells modify Zn dynamics in tissues, and a previous report suggests microadenomas in the anterior pituitary as a risk factor for suicide. Methods: Histopathological analysis with hematoxylin-eosin stain and histochemical techniques to assess Zn homeostasis were carried out on anterior pituitary postmortem samples from 14 suicide completers and 9 non-suicidal cases. Results: Pituitary microadenomas were identified in 35% of suicide cases and none in the non-suicidal cases. Furthermore, compartmentalized Zn (detected via dithizone reactivity), but not free Zn levels (detected via zinquin reactivity), was lower in the suicide cases compared to the non-suicidal group. Conclusion: This is the first report of a potential association between disrupted Zn homeostasis and microadenomas in the anterior pituitary as a feature in suicide and provides critical insights for future neuroendocrine Zn-related research.
ABSTRACT
We sought to determine the association between Toxoplasma gondii (T. gondii) infection of the central nervous system and suicide in a sample of decedents in Mexico City. One hundred and forty-seven decedents (87 who committed suicide and 60 who did not commit suicide) were studied. Brain tissues (amygdala and prefrontal cortex) of decedents were examined for the detection of T. gondii using immunohistochemistry. Detection of T. gondii was positive in 7 (8.0%) of the 87 cases (6 found in prefrontal cortex and one in amygdala), and in one (1.7%) of the 60 controls (found in prefrontal cortex) (OR: 5.16; 95% CI: 0.61-43.10; P = 0.14). Results suggest that T. gondii infection in brain is not associated with suicide. Further studies to confirm this finding are needed.
ABSTRACT
Valproic acid (VPA) is a drug that has various therapeutic applications; however, it has been associated with liver damage. Furthermore, it is interesting to propose new compounds derived from VPA as N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA). The HO-AAVPA has better antiproliferative activity than the VPA in different cancer cell lines. The purpose of this study was to evaluate the liver injury of HO-AAVPA by acute treatment (once administration) and repeated doses for 7 days under intraperitoneal administration. The median lethal dose value (LD50) was determined in rats and mice (females and males) using OECD Guideline 425. In the study, male rats were randomly divided into 4 groups (n = 7), G1: control (without treatment), G2: vehicle, G3: VPA (500 mg/kg), and G4: HO-AAVPA (708 mg/kg, in equimolar ratio to VPA). Some biomarkers related to hepatotoxicity were evaluated. In addition, macroscopic and histological studies were performed. The LD50 value of HO-AAVPA was greater than 2000 mg/kg. Regarding macroscopy and biochemistry, the HO-AAVPA does not induce liver injury according to the measures of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutathione peroxidase, glutathione reductase, and catalase activities. Comparing the treatment with HO-AAVPA and VPA did not show a significant difference with the control group, while malondialdehyde and glutathione-reduced levels in the group treated with HO-AAVPA were close to those of the control (p ≤ 0.05). The histological study shows that liver lesions caused by HO-AAVPA were less severe compared with VPA. Therefore, it is suggested that HO-AAVPA does not induce hepatotoxicity at therapeutic doses, considering that in the future it could be proposed as an antineoplastic drug.
Subject(s)
Chemical and Drug Induced Liver Injury , Neoplasms , Male , Female , Animals , Mice , Rats , Valproic Acid/adverse effects , Glutathione , Chemical and Drug Induced Liver Injury/etiologyABSTRACT
Objective: Coronavirus disease 2019 (COVID-19) has impacted mental health worldwide, and suicide can be a serious outcome of this. Thus, suicide characteristics were examined before and during the COVID-19 pandemic in Mexico City. Methods: This is a retrospective study including all Mexico City residents who had a coroner's record with a cause of death of intentional self-harm (ICD-10) from January 2016 to December 2021. Results: From 2016 to 2021, 3636 people committed suicide, of which 2869 were males (78.9%) and 767 females (21.1%). From 2016 to 2019 the suicide rate remained constant (â¼6 per 100000) and dramatically increased in 2020 (10.45 per 100,000), to return to the levels of the previous year in 2021 (6.95 per 100000). The suicide rate in 2020 specifically increased from January to June (COVID-19 outbreak) in all age groups. Moreover, every year young people (15-24 years) have the maximum suicide rate and depression was the main suicide etiology. Conclusion: The COVID-19 pandemic outbreak increased the suicide rate, regardless of age, but suicide prevalence was higher in males and young people, regardless of the COVID-19 pandemic. These findings confirm that suicide is a complex and multifactorial problem and will allow the establishment of new guidelines for prevention and care strategies.
ABSTRACT
The Sphaeralcea angustifolia plant is used as an anti-inflammatory and gastrointestinal protector in Mexican traditional medicine. The immunomodulatory and anti-inflammatory effects have been attributed to scopoletin (1), tomentin (2), and sphaeralcic acid (3) isolated from cells in suspension cultures and identified in the aerial tissues of the wild plant. The hairy roots from S. angustifolia established by infecting internodes with Agrobacterium rhizogenes were explored to produce active compounds based on biosynthetic stability and their capacity to produce new compounds. Chemical analysis was resumed after 3 years in these transformed roots, SaTRN12.2 (line 1) produced scopoletin (0.0022 mg g-1) and sphaeralcic acid (0.22 mg g-1); instead, the SaTRN7.1 (line 2) only produced sphaeralcic acid (3.07 mg g-1). The sphaeralcic acid content was 85-fold higher than that reported for the cells in the suspension cultivated into flakes, and it was similar when the cells in suspension were cultivated in a stirring tank under nitrate restriction. Moreover, both hairy root lines produced stigmasterol (4) and ß-sitosterol (5), as well as two new naphthoic derivates: iso-sphaeralcic acid (6) and 8-methyl-iso-sphaeralcic acid (7), which turned out to be isomers of sphaeralcic acid (3) and have not been reported. The dichloromethane-methanol extract from SaTRN7.1 hairy root line had a gastroprotective effect on an ulcer model in mice induced with ethanol.
ABSTRACT
Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL rats but failed to enhance social behavior disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.
Subject(s)
Antipsychotic Agents , Schizophrenia , Rats , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Olanzapine/pharmacology , Olanzapine/therapeutic use , Schizophrenia/drug therapy , Antioxidants/pharmacology , Rats, Sprague-Dawley , Prefrontal Cortex , Hippocampus , Neuronal Plasticity , Disease Models, AnimalABSTRACT
We assessed the association between Toxoplasma gondii (T. gondii) infection of the central nervous system and suicide correlates in suicide decedents. Eighty-seven decedents who died by suicide received in a forensic setting for medico-legal autopsies in Mexico City were studied. Two samples of brain (amygdala and prefrontal cortex) from each decedent were examined for detection of T. gondii using immunohistochemistry. Correlates of suicide including a history of previous suicide attempts, co-morbid mental disorder, consumption of alcohol or tobacco, irritability and aggression, economic problems, presence of drugs or alcohol in blood and suicide method were obtained and analyzed for their association with T. gondii infection. T. gondii immunohistochemistry was positive in prefrontal cortex sections in 6 decedents and in an amygdala section in one decedent. Thus, the prevalence of T. gondii infection in brain in suicide victims was 8.0% (7/87). Bivariate and logistic regression analysis of suicide correlates showed that only a history of depression was associated with T. gondii infection of the brain in suicide victims (OR: 12.00; 95% CI: 2.26-63.46; p = 0.003). Our results provide evidence that T. gondii infection in brain is associated with a history of depression in suicide decedents.
ABSTRACT
This study aimed to determine the association between suicide and Toxoplasma gondii (T. gondii) seropositivity. Serum samples of 89 decedents who committed suicide (cases) and 58 decedents who did not commit suicide (controls) were tested for anti-T. gondii IgG and IgM antibodies using enzyme-linked immunosorbent assays. Anti-T. gondii IgM antibodies were further detected by enzyme-linked fluorescence assay (ELFA). A total of 8 (9.0%) of the 89 cases and 6 (10.3%) of the 58 controls were positive for anti-T. gondii IgG antibodies (OR: 0.85; 95% CI: 0.28-2.60; p = 0.78). Anti-T. gondii IgG levels were higher than 150 IU/mL in two (2.2%) cases and in five (8.6%) controls (OR: 0.24; 95% CI: 0.04-1.30; p = 0.11). Anti-T. gondii IgM antibodies were not found in any case or control using the enzyme immunoassay and were found in only one (1.7%) control using ELFA (p = 0.39). Rates of IgG seropositivity and high levels of anti-T. gondii antibodies were similar in cases and in controls regardless of their sex or age groups. The results do not support an association between T. gondii seropositivity and suicide. However, the statistical power of the test was low. Further research is necessary to confirm this lack of association.
ABSTRACT
BACKGROUND: Suicide represents a major health concern, especially in developing countries. While many demographic risk factors have been proposed, the underlying molecular pathology of suicide remains poorly understood. A body of evidence suggests that aberrant DNA methylation and expression is involved. In this study, we examined DNA methylation profiles and concordant gene expression changes in the prefrontal cortex of Mexicans who died by suicide. METHODS: In collaboration with the coroner's office in Mexico City, brain samples of males who died by suicide (n = 35) and age-matched sudden death controls (n = 13) were collected. DNA and RNA were extracted from prefrontal cortex tissue and analyzed with the Infinium Methylation480k and the HumanHT-12 v4 Expression Beadchips, respectively. RESULTS: We report evidence of altered DNA methylation profiles at 4430 genomic regions together with 622 genes characterized by differential expression in cases vs controls. Seventy genes were found to have concordant methylation and expression changes. Metacore-enriched analysis identified 10 genes with biological relevance to psychiatric phenotypes and suicide (ADCY9, CRH, NFATC4, ABCC8, HMGA1, KAT2A, EPHA2, TRRAP, CD22, and CBLN1) and highlighted the association that ADCY9 has with various pathways, including signal transduction regulated by the cAMP-responsive element modulator, neurophysiological process regulated by the corticotrophin-releasing hormone, and synaptic plasticity. We therefore went on to validate the observed hypomethylation of ADCY9 in cases vs control through targeted bisulfite sequencing. CONCLUSION: Our study represents the first, to our knowledge, analysis of DNA methylation and gene expression associated with suicide in a Mexican population using postmortem brain, providing novel insights for convergent molecular alterations associated with suicide.
Subject(s)
DNA Methylation , Gene Expression , Prefrontal Cortex/metabolism , Suicide , Adult , Case-Control Studies , Epigenesis, Genetic , Humans , Male , MexicoABSTRACT
Patients with substance use disorders (SUD) are at high risk to die by suicide. So far, the neurobiology of the suicide-SUD association has not been elucidated. This study aimed to identify potential pharmacological targets among hub genes from brain gene co-expression networks of individuals with SUD in a suicidal and non-suicidal context. Post-mortem samples from the prefrontal cortex of 79 individuals were analyzed. Individuals were classified into the following groups: suicides with SUD (n = 28), suicides without SUD (n = 23), nonsuicides with SUD (n = 9), nonsuicides without SUD (n = 19). Gene expression profiles were evaluated with the Illumina HumanHT-12 v4 array. Co-expression networks were constructed in WGCNA using the differentially expressed genes found in the comparisons: (a) suicides with and without SUD and (b) nonsuicides with and without SUD. Hub genes were selected for drug-gene interaction testing in the DGIdb database. Among drugs interacting with hub genes in suicides we found MAOA inhibitors and dextromethorphan. In the nonsuicide individuals, we found interactions with eglumegad and antipsychotics (olanzapine, clozapine, loxapine). Modafinil was found to interact with genes in both suicides and nonsuicides. These drugs represent possible candidate treatments for patients with SUD with and without suicidal behavior and their study in each context is encouraged.
Subject(s)
Antipsychotic Agents/pharmacology , Brain/drug effects , Drug Repositioning/methods , Gene Regulatory Networks/drug effects , Substance-Related Disorders/drug therapy , Suicide Prevention , Adolescent , Adult , Aged , Aged, 80 and over , Brain/metabolism , Child , Female , Humans , Male , Middle Aged , Substance-Related Disorders/genetics , Substance-Related Disorders/pathology , Transcriptome , Young AdultABSTRACT
Abstract Background: Gene expression alterations have been implicated in suicide pathology. However, the study of the regulatory effect of DNA methylation on gene expression in the suicidal brain has been restricted to candidate genes. Objective: The objective of the study was to identify genes whose expression levels are correlated with DNA methylation in the prefrontal cortex of suicides. Methods: Postmortem prefrontal cortex samples from 21 suicides and six non-suicides were collected. Transcriptomic and DNA methylation profiles were evaluated with microarrays; cis correlations between gene expression and CpG methylation were screened. We then analyzed the presence of transcription factor (TF) binding sites (TFBS) at CpG sites correlated with gene expression. Gene expression of TFs involved in neurodevelopmental binding to predicted TFBS was determined in the BrainSpan database. Results: We identified 22 CpG sites whose methylation levels correlated with gene expression in the prefrontal cortex of suicides. Genes annotated to identified CpG sites were involved in neurodevelopment (BBS4, NKX6-2, AXL, CTNND1, and MBP) and polyamine metabolism (polyamine oxidase [PAOX]). Such correlations were not detected in the non-suicide group. Nine TFs (USF1, TBP, SF1, NRF1, RFX1, SP3, PKNOX1, MAZ, and POU3F2) showed differential expression in pre- and post-natal developmental periods, according to BrainSpan database. Conclusions: The integration of different omic technologies provided novel candidates for the investigation of genes whose expression is altered in the suicidal brain and their potential regulatory mechanisms. (REV INVEST CLIN. 2020;72(5):283-92)
ABSTRACT
BACKGROUND: Gene expression alterations have been implicated in suicide pathology. However, the study of the regulatory effect of DNA methylation on gene expression in the suicidal brain has been restricted to candidate genes. OBJECTIVE: The objective of the study was to identify genes whose expression levels are correlated with DNA methylation in the prefrontal cortex of suicides. METHODS: Postmortem prefrontal cortex samples from 21 suicides and six non-suicides were collected. Transcriptomic and DNA methylation profiles were evaluated with microarrays; cis correlations between gene expression and CpG methylation were screened. We then analyzed the presence of transcription factor (TF) binding sites (TFBS) at CpG sites correlated with gene expression. Gene expression of TFs involved in neurodevelopmental binding to predicted TFBS was determined in the BrainSpan database. RESULTS: We identified 22 CpG sites whose methylation levels correlated with gene expression in the prefrontal cortex of suicides. Genes annotated to identified CpG sites were involved in neurodevelopment (BBS4, NKX6-2, AXL, CTNND1, and MBP) and polyamine metabolism (polyamine oxidase [PAOX]). Such correlations were not detected in the nonsuicide group. Nine TFs (USF1, TBP, SF1, NRF1, RFX1, SP3, PKNOX1, MAZ, and POU3F2) showed differential expression in pre- and post-natal developmental periods, according to BrainSpan database. CONCLUSIONS: The integration of different omic technologies provided novel candidates for the investigation of genes whose expression is altered in the suicidal brain and their potential regulatory mechanisms.
ABSTRACT
Suicidal behavior is result of the interaction of several contributors, including genetic and environmental factors. The integration of approaches considering the polygenic component of suicidal behavior, such as polygenic risk scores (PRS) and DNA methylation is promising for improving our understanding of the complex interplay between genetic and environmental factors in this behavior. The aim of this study was the evaluation of DNA methylation differences between individuals with high and low genetic burden for suicidality. The present study was divided into two phases. In the first phase, genotyping with the Psycharray chip was performed in a discovery sample of 568 Mexican individuals, of which 149 had suicidal behavior (64 individuals with suicidal ideation, 50 with suicide attempt and 35 with completed suicide). Then, a PRS analysis based on summary statistics from the Psychiatric Genomic Consortium was performed in the discovery sample. In a second phase, we evaluated DNA methylation differences between individuals with high and low genetic burden for suicidality in a sub-sample of the discovery sample (target sample) of 94 subjects. We identified 153 differentially methylated sites between individuals with low and high-PRS. Among genes mapped to differentially methylated sites, we found genes involved in neurodevelopment (CHD7, RFX4, KCNA1, PLCB1, PITX1, NUMBL) and ATP binding (KIF7, NUBP2, KIF6, ATP8B1, ATP11A, CLCN7, MYLK, MAP2K5). Our results suggest that genetic variants might increase the predisposition to epigenetic variations in genes involved in neurodevelopment. This study highlights the possible implication of polygenic burden in the alteration of epigenetic changes in suicidal behavior.
Subject(s)
DNA Methylation , Multifactorial Inheritance , Suicidal Ideation , Suicide, Attempted , Epigenesis, Genetic , HumansABSTRACT
BACKGROUND: Suicide rates vary substantially by sex. Suicides committed by males significantly outnumber female suicides. Disparities in community and social factors provide a partial explanation for this phenomenon. Thus, the evaluation of sex differences at a biological level might contribute to the elucidation of the factors involved in this imbalance. The aim of the present study was to evaluate sex-specific gene expression patterns in the suicidal brain. METHODS: postmortem samples from the dorsolateral prefrontal cortex (DLPFC) of 75 Latino individuals were analyzed. We considered the following groups: i) male suicides (n = 38), ii) female suicides (n = 10), iii) male controls (n = 20), and iv) female controls (n = 7). Gene expression profiles were evaluated by microarrays. Differentially expressed genes among the groups were identified with a linear model. Similarities and differences in the gene sets between the sexes were identified. RESULTS: Differentially expressed genes were identified between suicides and controls of each sex: 1,729 genes in females and 1,997 genes in males. Female-exclusive suicide genes were related to cell proliferation and immune response. Meanwhile, male-exclusive suicide genes were associated to DNA binding and ribonucleic protein complex. Sex-independent suicide genes showed enrichment in mitochondrial and vesicular functions. LIMITATIONS: Relatively small sample size. Our diagnosis approach was limited to information found on coroner's records. The analysis was limited to a single brain area (DLPFC) and we used microarrays. CONCLUSION: Previously unexplored sex differences in the brain gene expression of suicide completers were identified, providing valuable foundation for the evaluation of sex-specific factors in suicide.
Subject(s)
Brain , Sex Characteristics , Female , Gene Expression Profiling , Humans , Male , Prefrontal Cortex , TranscriptomeABSTRACT
Genetic factors have been implicated in suicidal behavior. It has been suggested that one of the roles of genetic factors in suicide could be represented by the effect of genetic variants on gene expression regulation. Alteration in the expression of genes participating in multiple biological systems in the suicidal brain has been demonstrated, so it is imperative to identify genetic variants that could influence gene expression or its regulatory mechanisms. In this study, we integrated DNA methylation, gene expression, and genotype data from the prefrontal cortex of suicides to identify genetic variants that could be factors in the regulation of gene expression, generally called quantitative trait locus (xQTLs). We identify 6,224 methylation quantitative trait loci and 2,239 expression quantitative trait loci (eQTLs) in the prefrontal cortex of suicide completers. The xQTLs identified influence the expression of genes involved in neurodevelopment and cell organization. Two of the eQTLs identified (rs8065311 and rs1019238) were previously associated with cannabis dependence, highlighting a candidate genetic variant for the increased suicide risk in subjects with substance use disorders. Our findings suggest that genetic variants may regulate gene expression in the prefrontal cortex of suicides through the modulation of promoter and enhancer activity, and to a lesser extent, binding transcription factors.
Subject(s)
Prefrontal Cortex/metabolism , Quantitative Trait Loci/genetics , Suicide/psychology , Adult , Cerebral Cortex/metabolism , DNA Methylation/genetics , Depressive Disorder, Major , Gene Expression/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Humans , Male , Personality Disorders , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/geneticsABSTRACT
Objective: Dual diagnosis (DD) is the co-occurrence of at least one substance use disorder and one or more mental disorders in a given individual. Despite this comorbidity being highly prevalent and associated with adverse clinical outcomes, its neurobiology remains unclear. Furthermore, patients with DD are at higher risk for suicidal behavior in comparison with single disorder patients. Our objective was to evaluate brain gene expression patterns in individuals with DD who died by suicide. Methods: We compared the gene expression profile in the dorsolateral prefrontal cortex of suicides with DD (n = 10) to the transcriptome of suicides with substance use disorder alone (n = 10), suicides with mood disorders (MD) alone (n = 13), and suicides without mental comorbidities (n = 5). Gene expression profiles were assessed by microarrays. In addition, we performed a brain cell type enrichment to evaluate whether the gene expression profiles could reflect differences in cell type compositions among the groups. Results: When comparing the transcriptome of suicides with DD to suicides with substance use disorder alone and suicides with MD alone, we identified 255 and 172 differentially expressed genes (DEG), respectively. The overlap of DEG between both comparisons (112 genes) highlighted the presence of common disrupted pathways in substance use disorder and MD. When comparing suicides with DD to suicides without mental comorbidities, we identified 330 DEG, mainly enriched in neurogenesis. Cell type enrichment indicated higher levels of glial markers in suicides with DD compared to the other groups. Conclusions: Suicides with DD exhibited a gene expression profile distinct from that of suicides with a single disorder, being substance use disorder or MD, and suicides without mental disorders. Our results suggest alteration in the expression of genes involved in glial specific markers, glutamatergic and GABAergic neurotransmission in suicides with DD compared to suicides with a single disorder and suicides without mental comorbidities. Alterations in the expression of synaptic genes at different levels were found in substance use disorder and MD.
Subject(s)
Gene Expression Profiling , Mood Disorders , Prefrontal Cortex/metabolism , Substance-Related Disorders , Suicide, Completed , Adolescent , Adult , Alcoholism/epidemiology , Alcoholism/genetics , Alcoholism/metabolism , Autopsy , Cause of Death , Comorbidity , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Diagnosis, Dual (Psychiatry) , Female , Humans , Male , Middle Aged , Mood Disorders/epidemiology , Mood Disorders/genetics , Mood Disorders/metabolism , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Substance-Related Disorders/metabolism , Suicide, Completed/statistics & numerical data , Young AdultABSTRACT
BACKGROUND/AIM: Although individuals with substance use disorder (SUD) are at high risk of committing suicide, most studies of postmortem gene expression exclude subjects with SUD due to the potential confounding effect of drugs in the transcriptome. Thus, little is known about the gene expression profile in suicides with SUD. The identification of altered biological processes in suicides with SUD is crucial in the comprehension of the interaction between both pathologies. METHODS: We evaluated the gene expression profile in the dorsolateral prefrontal area of suicides and nonsuicides with and without SUD by microarrays. RESULTS: We identified 222 differentially expressed genes, predominately enriched in cell proliferation in the comparison between suicides with and without SUD. When comparing the transcriptome of suicides with SUD to nonsuicides with SUD, we identified 550 differentially expressed genes, mainly enriched in oxidative phosphorylation. Differentially expressed genes (1,417) between suicides and nonsuicides without SUD were detected. Most of them were related to mitochondrial function. CONCLUSION: Interaction between suicide and SUD seems to influence the expression of genes involved in glial proliferation and glutamatergic neurotransmission. These results highlight, for the first time, that suicides with SUD have a gene expression profile distinct from that of subjects with only one of these disorders.
ABSTRACT
Objective: To analyze sex differences in demographic and clinical characteristics of individuals who died by suicide in Mexico City. Method: Statistical analysis of residents of Mexico City whose cause of death was suicide, during two years period from January 2014 to December 2015, with a coroner's report. Suicide mortality rates were calculated by age, sex, and location within the city. The Chi-squared test was used to assess statistical differences. Results: From January 2014 to December 2015, 990 residents of Mexico City died by suicide (men: 78.28%, women: 21.72%). Among males, the highest mortality rates were among the groups of 20-24 and 75-79 years old, whereas in women, the group with the highest mortality rate was 15 to 19 years old. 74% of the sample used hanging as suicide method. However, men had higher rates of a positive result in the toxicology test (40%) (p < 0.05). There was no concordance between male and female suicide by city jurisdictions. Conclusion: Our results provide evidence that the characteristics of Mexico City's residents who committed suicide had significant sex-related differences, including where they used to live. Understanding the contributory factors associated with completed suicide is essential for the development of effective preventive strategies.
ABSTRACT
BACKGROUND: In the United States, Puerto Ricans have a higher prevalence of asthma than other Latino ethnicities. Low vitamin D levels for children living in northern climates could be a factor. OBJECTIVE: To assess serum 25-hydroxyvitamin D [25(OH)D] distributions (a marker of vitamin D) and associations among vitamin D, allergic sensitization, early wheeze, and home/demographic factors. METHODS: Puerto Rican infants born in New York City, with a maternal history of atopy, were enrolled in a birth cohort. Blood was collected at age 2 years (n = 154; 82 males and 72 females). Serum 25(OH)D and immunoglobulin E (IgE) (indoor allergen-specific and total) were determined using immunoassays. Home/demographic characteristics and respiratory symptoms were assessed by questionnaire. RESULTS: The median concentration of 25(OH)D was 22.6 ng/mL; 32% were at risk of deficiency or inadequacy (<12 or 12-19 ng/mL). Serum 25(OH)D levels were lower in the heating (a surrogate for less sun exposure in colder months) compared with nonheating (26.1 vs 22.7 ng/mL, P = .02) season, but were not associated with allergen-specific IgE levels or with level of acculturation (measured by maternal birthplace). However, low 25(OH)D levels (below median) were associated with high total IgE >100 IU/mL (P = .01). Also, 25(OH)D concentrations differed between children who attended daycare and those who did not (21.8 vs 24.5 ng/mL; t test, P = .02). Serum 25(OH)D was not associated with wheeze or asthma by 2 years of age (P = .43). CONCLUSION: Vitamin D deficiency, possibly linked with allergic pathways, may partially explain the trajectory for disproportionate asthma burden among Puerto Ricans, especially those born and raised in colder climates.
Subject(s)
Hypersensitivity/epidemiology , Vitamin D Deficiency/epidemiology , Vitamin D/analogs & derivatives , Child, Preschool , Cohort Studies , Follow-Up Studies , Humans , Immunoglobulin E/blood , Infant , Infant, Newborn , New York City/epidemiology , Puerto Rico/ethnology , Respiratory Sounds , Risk , Seasons , Vitamin D/bloodABSTRACT
Recently in Mexico the number of cosmetic surgeries has increased. These procedures are often carried out by unqualified people using obsolete and contraindicated products such as injectable oil, which cause uncorrectable disfigurement or more serious complications, even death, after reaching the systemic circulation. We report the case of a fat embolism syndrome (FES) caused by injections of vitamin E (tocopherol) in order to increase the volume of the buttocks. This case of a FES caused by injections of vitamin E was confirmed by gas chromatography coupled to mass spectrometry.