Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500239

ABSTRACT

In the current research, our work measured the effect of silver nanoparticles (AgNP) synthesized from Larrea tridentata (Sessé and Moc. ex DC.) on the mycelial growth and morphological changes in mycelia from different phytopathogenic and beneficial fungi. The assessment was conducted in Petri dishes, with Potato-Dextrose-Agar (PDA) as the culture medium; the AgNP concentrations used were 0, 60, 90, and 120 ppm. Alternaria solani and Botrytis cinerea showed the maximum growth inhibition at 60 ppm (70.76% and 51.75%). Likewise, Macrophomina spp. required 120 ppm of AgNP to achieve 65.43%, while Fusarium oxisporum was less susceptible, reaching an inhibition of 39.04% at the same concentration. The effect of silver nanoparticles was inconspicuous in Pestalotia spp., Colletotrichum gloesporoides, Phytophthora cinnamomi, Beauveria bassiana, Metarhizium anisopliae, and Trichoderma viridae fungi. The changes observed in the morphology of the fungi treated with nanoparticles were loss of definition, turgidity, and constriction sites that cause aggregations of mycelium, dispersion of spores, and reduced mycelium growth. AgNP could be a sustainable alternative to managing diseases caused by Alternaria solani and Macrophomina spp.


Subject(s)
Ascomycota , Fusarium , Metal Nanoparticles , Silver/pharmacology , Fungi , Alternaria , Culture Media/pharmacology
2.
Materials (Basel) ; 14(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832343

ABSTRACT

The interest in multifunctional biomaterials to be implanted are also able to release drugs that reduce pain and inflammation or prevent a possible infection has increased. Bioactive materials such as silica (SiO2) containing surface silanol groups contribute to the nucleation and growth of hydroxyapatite (HAp) in a physiological environment. Regarding biocompatibility, the spherical shape of particles is the desirable one, since it does not cause mechanical damage to the cell membrane. In this work, the synthesis of SiO2 microspheres was performed by the modified Stöber method and they were used for the biomimetic growth of HAp on their surface. The effect of the type of surfactant (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG)), and heat treatment on the morphology and size of SiO2 particles was investigated. Monodisperse, spherical-shaped SiO2 microparticles with an average particle size of 179 nm, were obtained when using PEG (SiO2-PEG). The biomimetic growth of HAp was performed on this sample to improve its biocompatibility and drug-loading capacity using gentamicin as a model drug. Biomimetic growth of HAp was confirmed by FTIR-ATR, SEM-EDX and TEM techniques. SiO2-PEG/HAp sample had a better biocompatibility in vitro and gentamicin loading capacity than SiO2-PEG sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...