Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 271(Pt 1): 132573, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782315

ABSTRACT

Guided bone regeneration can play an important role in orthopedic applications. This work presents the synthesis and characterization of composite scaffolds based on polysaccharides loaded with microparticles of titanium or tantalum as novel materials proposed for composite systems with promising characteristics for guided bone regeneration. Ti/Ta composite scaffolds were synthesized using chitosan and gellan gum as organic substrates and crosslinked with oxidized dextran resulting in stable inorganic-organic composites. Physico-chemical characterization revealed a uniform distribution of metal nanoparticles within the scaffolds that showed a release of metals lower than 5 %. In vitro biological assays demonstrated that Ta composites exhibit a 2 times higher ALP activity than Ti and a higher capacity to support the full differentiation of human mesenchymal stem cells into osteoblasts. These results highlight their potential for bone regeneration applications.

3.
Biomacromolecules ; 24(2): 613-627, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36594453

ABSTRACT

This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 µg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 µg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 µg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.


Subject(s)
Anti-Infective Agents , Chitosan , Nanoparticles , Chitosan/pharmacology , Chitosan/chemistry , Polymers/pharmacology , Catechols/pharmacology , Catechols/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/pharmacology
4.
Pharmaceutics ; 14(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36015270

ABSTRACT

Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.

5.
Curr Opin Biotechnol ; 76: 102752, 2022 08.
Article in English | MEDLINE | ID: mdl-35809432

ABSTRACT

Antimicrobial resistance is the main threat to biomaterial failure with a huge impact on National Health Systems and patients' quality of life. Materials engineering and biotechnology have experienced great advances and have converged in the development of new and more sophisticated biomimetic systems with antimicrobial properties. In this sense, polymeric biomaterials play and will play a key role in the development of new antimicrobial devices for biomedical applications. In this Current Opinion article, we review recent and relevant advances reported in the field of polymeric biomaterials with antimicrobial properties with the potential to be applied in the clinic, that is, antimicrobial polymers, antifouling surfaces, nanodelivery systems of antibiotics and antiseptic drugs, biocide polymer-metal hybrid systems, and engineered living materials that actively interact with the pathogen. We conclude with a discussion on the implications of the results for clinical practice and future research.


Subject(s)
Anti-Infective Agents , Biocompatible Materials , Anti-Bacterial Agents , Biotechnology , Humans , Nanotechnology , Polymers , Quality of Life
6.
Polymers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406162

ABSTRACT

A series of non-toxic biodegradable and biocompatible polyurethanes bearing p-aminobenzoate moieties are presented. The introduction of this attractive motif was carried out by the synthesis of a novel isocyanate. These biodegradable polymers were chemically and physically characterized by several techniques and methods including bioassay and water uptake measurements. The molecular weight of the soft segment (poly-ε-caprolactone, PCL) and hard segment crystallinity dictated the mechanical behavior and water uptake. The behavior of short PCL-based polyurethanes was elastomeric, whilst increasing the molecular weight of the soft segment led to plastic polyurethanes. Water uptake was hindered for long PCL due to the crystallization of the soft segment within the polyurethane matrix. Furthermore, two different types of chain extender, hydrolyzable and non-hydrolyzable, were also evaluated: polyurethanes based on hydrolyzable chain extenders reached higher molecular weights, thus leading to a better performance than their unhydrolyzable counterparts. The good cell adhesion and cytotoxicity results demonstrated the cell viability of human osteoblasts on the surfaces of these non-toxic biodegradable polyurethanes.

7.
Front Bioeng Biotechnol ; 10: 1058355, 2022.
Article in English | MEDLINE | ID: mdl-36601388

ABSTRACT

Articular cartilage is an avascular tissue that lines the ends of bones in diarthrodial joints, serves as support, acts as a shock absorber, and facilitates joint's motion. It is formed by chondrocytes immersed in a dense extracellular matrix (principally composed of aggrecan linked to hyaluronic acid long chains). Damage to this tissue is usually associated with traumatic injuries or age-associated processes that often lead to discomfort, pain and disability in our aging society. Currently, there are few surgical alternatives to treat cartilage damage: the most commonly used is the microfracture procedure, but others include limited grafting or alternative chondrocyte implantation techniques, however, none of them completely restore a fully functional cartilage. Here we present the development of hydrogels based on hyaluronic acid and chitosan loaded with chondroitin sulfate by a new strategy of synthesis using biodegradable di-isocyanates to obtain an interpenetrated network of chitosan and hyaluronic acid for cartilage repair. These scaffolds act as delivery systems for the chondroitin sulfate and present mucoadhesive properties, which stabilizes the clot of microfracture procedures and promotes superficial chondrocyte differentiation favoring a true articular cellular colonization of the cartilage. This double feature potentially improves the microfracture technique and it will allow the development of next-generation therapies against articular cartilage damage.

8.
Carbohydr Polym ; 273: 118605, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34561005

ABSTRACT

Advanced biomaterials provide an interesting and versatile platform to implement new and more effective strategies to fight bacterial infections. Chitosan is one of these biopolymers and possesses relevant features for biomedical applications. Here we synthesized nanoparticles of chitosan derivatized with diethylaminoethyl groups (ChiDENPs) to emulate the choline residues in the pneumococcal cell wall and act as ligands for choline-binding proteins (CBPs). Firstly, we assessed the ability of diethylaminoethyl (DEAE) to sequester the CBPs present in the bacterial surface, thus promoting chain formation. Secondly, the CBP-binding ability of ChiDENPs was purposed to encapsulate a bio-active molecule, the antimicrobial enzyme Cpl-711 (ChiDENPs-711), with improved stability over non-derivatized chitosan. The enzyme-loaded system released more than 90% of the active enzybiotic in ≈ 2 h, above the usual in vivo half-life of this kind of enzymes. Therefore, ChiDENPs provide a promising platform for the controlled release of CBP-enzybiotics in biological contexts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemistry , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Endopeptidases/pharmacology , Nanoparticles/chemistry , A549 Cells , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/metabolism , Chitosan/chemistry , Chitosan/metabolism , Drug Carriers/metabolism , Drug Liberation , Endopeptidases/chemistry , Humans , Nanoparticles/metabolism , Streptococcus pneumoniae/drug effects
9.
Polymers (Basel) ; 13(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918049

ABSTRACT

Natural polymers have been widely used for biomedical applications in recent decades. They offer the advantages of resembling the extracellular matrix of native tissues and retaining biochemical cues and properties necessary to enhance their biocompatibility, so they usually improve the cellular attachment and behavior and avoid immunological reactions. Moreover, they offer a rapid degradability through natural enzymatic or chemical processes. However, natural polymers present poor mechanical strength, which frequently makes the manipulation processes difficult. Recent advances in biofabrication, 3D printing, microfluidics, and cell-electrospinning allow the manufacturing of complex natural polymer matrixes with biophysical and structural properties similar to those of the extracellular matrix. In addition, these techniques offer the possibility of incorporating different cell lines into the fabrication process, a revolutionary strategy broadly explored in recent years to produce cell-laden scaffolds that can better mimic the properties of functional tissues. In this review, the use of 3D printing, microfluidics, and electrospinning approaches has been extensively investigated for the biofabrication of naturally derived polymer scaffolds with encapsulated cells intended for biomedical applications (e.g., cell therapies, bone and dental grafts, cardiovascular or musculoskeletal tissue regeneration, and wound healing).

10.
Carbohydr Polym ; 250: 116973, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049902

ABSTRACT

The aim of this paper is to achieve in situ photochemical synthesis of silver nanoclusters (AgNCs) stabilized by the multiple-amine groups of chitosan (Ch@AgNCs) with luminescent and photothermal properties. Ch@AgNCs were obtained by applying a fast and simple methodology previously described by our group. Direct functionalization of AgNCs with chitosan template provided new nanohybrids directly in water solution, both in the presence or absence of oxygen. The formation of hybrid AgNCs could be monitored by the rapid increase of the absorption and emission maximum band with light irradiation time. New Ch@AgNCs not only present photoluminescent properties but also photothermal properties when irradiated with near infrared light (NIR), transducing efficiently NIR into heat and increasing the temperature of the medium up to 23 °C. The chitosan polymeric shell associated to AgNCs works as a protective support stabilizing the metal cores, facilitating the storage of nanohybrids and preserving luminescent, photothermal and bactericide properties.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Biosensing Techniques/methods , Chitosan/chemistry , Escherichia coli/drug effects , Luminescence , Metal Nanoparticles/administration & dosage , Silver/chemistry , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Photochemical Processes , Temperature
11.
Polymers (Basel) ; 12(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824142

ABSTRACT

The development of a biocomposite polymeric system for the antibacterial coating of polypropylene mesh materials for hernia repair is reported. Coatings were constituted by a film of chitosan containing randomly dispersed poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with chlorhexidine or rifampicin. The chlorhexidine-loaded system exhibited a burst release during the first day reaching the release of the loaded drug in three or four days, whereas rifampicin was gradually released for at least 11 days. Both antibacterial coated meshes were highly active against Staphylococcus aureus and Staphylococcus epidermidis (106 CFU/mL), displaying zones of inhibition that lasted for 7 days (chlorhexidine) or 14 days (rifampicin). Apparently, both systems inhibited bacterial growth in the surrounding environment, as well as avoided bacterial adhesion to the mesh surface. These polymeric coatings loaded with biodegradable nanoparticles containing antimicrobials effectively precluded bacterial colonization of the biomaterial. Both biocomposites showed adequate performance and thus could have potential application in the design of antimicrobial coatings for the prophylactic coating of polypropylene materials for hernia repair.

12.
Carbohydr Polym ; 241: 116269, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32507162

ABSTRACT

Chitosan-based membranes are promising systems for guided bone regeneration. In this work, we used glycerylphytate as ionic crosslinker and osteinductor compound for the fabrication of chitosan membranes as supports for human mesenchymal stem cells. Three different glycerylphytate-crosslinked membranes were developed by changing the crosslinker concentration, from 2.5-10 wt-%, respect to chitosan. Physico-chemical characterization in terms of composition, morphology, and thermal behavior was further analyzed. Swelling degree, crosslinking density, and crosslinker release showed a glycerylphytate content-dependent behavior. Glycerylphytate suggested to improve osteointegration ability of chitosan surfaces by the formation of apatite-like aggregates after incubation in body simulated fluid. Stem cells cultured on the membranes increased their viability over time, and the incorporation of glycerylphytate improved osteogenic and osteoinductivity potential of chitosan by increasing calcium deposition and alkaline phosphatase (ALP) activity on cultured stem cells. These results demonstrated a potential application of glycerylphytate-crosslinked chitosan systems for promising bone tissue regeneration.


Subject(s)
Bone Regeneration , Chitosan/chemistry , Cross-Linking Reagents/chemistry , Phytic Acid/analogs & derivatives , Phytic Acid/chemistry , Alkaline Phosphatase/metabolism , Cell Adhesion , Cell Proliferation , Cell Survival , Cells, Cultured , Humans , Membranes, Artificial , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Tissue Engineering
14.
Chemistry ; 25(49): 11437-11455, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31373416

ABSTRACT

HCN polymers are a group of complex and heterogeneous substances that are widely known in the fields of astrobiology and prebiotic chemistry. In addition, they have recently received considerable attention as potential functional material coatings. However, the real nature and pathways of formation of HCN polymers remain open questions. It is well established that the tuning of macromolecular structures determines the properties and practical applications of a polymeric material. Herein, different synthetic conditions were explored for the production of HCN polymers from NH4 CN or diaminomaleonitrile in aqueous media with different concentrations of the starting reactants and several reaction times. By using a systematic methodology, both series of polymers were shown to exhibit similar, but not identical, spectroscopic and thermal fingerprints, which resulted in a clear differentiation of their morphological and electrochemical properties. New macrostructures are proposed for HCN polymers, and promising insights are discussed for prebiotic chemistry and materials science on the basis of the experimental results.

15.
Semin Arthritis Rheum ; 49(2): 171-183, 2019 10.
Article in English | MEDLINE | ID: mdl-30878154

ABSTRACT

OBJECTIVE: Osteoarthritis is a chronic, painful and disabling disease which prevalence is increasing in developing countries. Patients with osteoarthritis present a reduced synovial fluid viscoelasticity due to a reduction in concentration and molecular weight of hyaluronic acid. Currently, the main treatment used to restore the compromised rheological properties of synovial fluid is the viscosupplementation by hyaluronic acid injections that can be combined with oral anti-inflammatory drugs for pain relief. Combination of viscosupplements with chemical agents or drugs is emerging as a new strategy to provide a double action of synovial fluid viscoelasticity recovery and the therapeutic effect of the bioactive principle. METHODS: In this review, we present the latest research on the combination of viscosupplements with active molecules. We conducted a literature review of articles published in different web search engines and categorized according to the active molecule introduced into the viscosupplement. RESULTS: Generally, the introduction of anti-inflammatory molecules have shown to improve pain relief although some cytotoxicity has been demonstrated especially for non-steroidal anti-inflammatory drugs. Other molecules such as antioxidant or disease modifying osteoarthritis drugs have been reported to improve viscosupplementation action. Drug delivery systems combined with hyaluronic acid could enhance the activity of the encapsulated molecules and provide better control over the drug release. Finally, biological approaches such as the use of stem cells or platelet-rich plasma seem to be the most promising strategies for cartilage recovery. CONCLUSIONS: Combination therapy of viscosupplements with therapeutic agents, drug delivery systems or regenerative therapies can improve viscosupplementation outcome in terms of pain relief and joint functionality. However, further research is needed in order to reach more conclusive results.


Subject(s)
Osteoarthritis/drug therapy , Viscosupplementation , Viscosupplements/therapeutic use , Humans , Hyaluronic Acid/therapeutic use , Injections, Intra-Articular , Synovial Fluid , Treatment Outcome
16.
ACS Appl Mater Interfaces ; 11(4): 3781-3799, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30609898

ABSTRACT

Osteochondral (OC) regeneration faces several limitations in orthopedic surgery, owing to the complexity of the OC tissue that simultaneously entails the restoration of articular cartilage and subchondral bone diseases. In this study, novel biofunctional hierarchical scaffolds composed of a horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) cartilage-like layer (HRP-SF layer) fully integrated into a HRP-SF/ZnSr-doped ß-tricalcium phosphate (ß-TCP) subchondral bone-like layer (HRP-SF/dTCP layer) were proposed as a promising strategy for OC tissue regeneration. For comparative purposes, a similar bilayered structure produced with no ion incorporation (HRP-SF/TCP layer) was used. A homogeneous porosity distribution was achieved throughout the scaffolds, as shown by micro-computed tomography analysis. The ion-doped bilayered scaffolds presented a wet compressive modulus (226.56 ± 60.34 kPa) and dynamic mechanical properties (ranging from 403.56 ± 111.62 to 593.56 ± 206.90 kPa) superior to that of the control bilayered scaffolds (189.18 ± 90.80 kPa and ranging from 262.72 ± 59.92 to 347.68 ± 93.37 kPa, respectively). Apatite crystal formation, after immersion in simulated body fluid (SBF), was observed in the subchondral bone-like layers for the scaffolds incorporating TCP powders. Human osteoblasts (hOBs) and human articular chondrocytes (hACs) were co-cultured onto the bilayered structures and monocultured in the respective cartilage and subchondral bone half of the partitioned scaffolds. Both cell types showed good adhesion and proliferation in the scaffold compartments, as well as adequate integration of the interface regions. Osteoblasts produced a mineralized extracellular matrix (ECM) in the subchondral bone-like layers, and chondrocytes showed GAG deposition. The gene expression profile was different in the distinct zones of the bilayered constructs, and the intermediate regions showed pre-hypertrophic chondrocyte gene expression, especially on the BdTCP constructs. Immunofluorescence analysis supported these observations. This study showed that the proposed bilayered scaffolds allowed a specific stimulation of the chondrogenic and osteogenic cells in the co-culture system together with the formation of an osteochondral-like tissue interface. Hence, the structural adaptability, suitable mechanical properties, and biological performance of the hierarchical scaffolds make these constructs a desired strategy for OC defect regeneration.


Subject(s)
Tissue Scaffolds/chemistry , Animals , Calcium Phosphates/chemistry , Chondrocytes/physiology , Chondrogenesis/genetics , Chondrogenesis/physiology , Coculture Techniques , Extracellular Matrix , Fibroins/chemistry , Humans , Osteoblasts/physiology , Osteogenesis/physiology , Tissue Engineering/methods
17.
Adv Exp Med Biol ; 1059: 315-330, 2018.
Article in English | MEDLINE | ID: mdl-29736580

ABSTRACT

The control of the different angiogenic process is an important point in osteochondral regeneration. Angiogenesis is a prerequisite for osteogenesis in vivo; insufficient neovascularization of bone constructs after scaffold implantation resulted in hypoxia and cellular necrosis. Otherwise, angiogenesis must be avoided in chondrogenesis; vascularization of the cartilage contributes to structural damage and pain. Finding a balance between these processes is important to design a successful treatment for osteochondral regeneration. This chapter shows the most important advances in the control of angiogenic process for the treatment of osteochondral diseases focused on the administration of pro- or anti-angiogenic factor and the design of the scaffold.


Subject(s)
Bone and Bones/blood supply , Cartilage, Articular/blood supply , Neovascularization, Physiologic , Tissue Scaffolds , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Modulating Agents/therapeutic use , Bone Diseases/physiopathology , Bone Diseases/surgery , Cartilage Diseases/physiopathology , Cartilage Diseases/surgery , Cations/therapeutic use , Chondrogenesis/physiology , Forecasting , Humans , Neovascularization, Pathologic/prevention & control , Osteogenesis/physiology , Postoperative Complications/prevention & control , Tissue Scaffolds/classification
18.
J Control Release ; 270: 53-64, 2018 01 28.
Article in English | MEDLINE | ID: mdl-29197586

ABSTRACT

Polymeric nanoparticles (NPs) based on smart synthetic amphiphilic copolymers are used to transport and controlled release dexamethasone in the inner ear to protect against the ototoxic effect of cisplatin. The NPs were based on a mixture of two pseudo-block polymer drugs obtained by free radical polymerization: poly(VI-co-HEI) and poly(VP-co-MVE) or poly(VP-co-MTOS), being VI 1-vinylimidazole, VP N-vinylpyrrolidone, and HEI, MVE and MTOS the methacrylic derivatives of ibuprofen, α-tocopherol and α-tocopheryl succinate, respectively. The NPs were obtained by nanoprecipitation with appropriate hydrodynamic properties, and isoelectric points that matched the pH of inflamed tissue. The NPs were tested both in vitro (using HEI-OC1 cells) and in vivo (using a murine model) with good results. Although the concentration of dexamethasone administered in the NPs is around two orders of magnitude lower that the conventional treatment for intratympanic administration, the NPs protected from the cytotoxic effect of cisplatin when the combination of the appropriate properties in terms of size, zeta potential, encapsulation efficiency and isoelectric point were achieved. To the best of our knowledge this is the first time that pH sensitive NPs are used to protect from cisplatin-induced hearing loss by intratympanic administration.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Hearing Loss/drug therapy , Nanoparticles/administration & dosage , Polymers/administration & dosage , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Cell Line , Cisplatin , Coumarins/administration & dosage , Coumarins/chemistry , Dexamethasone/administration & dosage , Dexamethasone/chemistry , Hearing Loss/chemically induced , Hydrogen-Ion Concentration , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Rats, Wistar , Thiazoles/administration & dosage , Thiazoles/chemistry , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/chemistry
19.
Biomaterials ; 82: 113-23, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26757258

ABSTRACT

Cell detachment and migration from the endothelium occurs during vasculogenesis and also in pathological states. Here, we use a novel approach to trigger single cell release from an endothelial monolayer by in-situ opening of adhesive, fibril-like environment using light-responsive ligands and scanning lasers. Cell escapes from the monolayer were observed on the fibril-like adhesive tracks with 3-15 µm width. The frequency of endothelial cell escapes increased monotonically with the fibril width and with the density of the light-activated adhesive ligand. Interestingly, treatment with VEGF induced cohesiveness within the cell layer, preventing cell leaks. When migrating through the tracks, cells presented body lateral reduction and nuclear deformation imposed by the line width and dependent on myosin contractility. Cell migration mode changed from mesenchymal to amoeboid-like when the adhesive tracks narrowed (≤5 µm). Moreover, cell nucleus was shrunk showing packed DNA on lines narrower than the nuclear dimensions in a mechanisms intimately associated with the stress fibers. This platform allows the detailed study of escapes and migratory transitions of cohesive cells, which are relevant processes in development and during diseases such as organ fibrosis and carcinomas.


Subject(s)
Cell Adhesion/physiology , Cell Movement/physiology , Cellular Microenvironment/physiology , Endothelial Cells/physiology , Extracellular Matrix/metabolism , Oligopeptides/metabolism , Adhesiveness/radiation effects , Cell Adhesion/radiation effects , Cell Movement/radiation effects , Cells, Cultured , Cellular Microenvironment/radiation effects , Endothelial Cells/cytology , Endothelial Cells/radiation effects , Endothelium/cytology , Endothelium/physiology , Endothelium/radiation effects , Extracellular Matrix/chemistry , Extracellular Matrix/radiation effects , Humans , Light , Oligopeptides/chemistry , Oligopeptides/radiation effects
20.
PLoS One ; 10(10): e0140782, 2015.
Article in English | MEDLINE | ID: mdl-26474061

ABSTRACT

Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.


Subject(s)
Cell Membrane/metabolism , Colorectal Neoplasms/metabolism , Depsipeptides/pharmacology , Glucosylceramides/metabolism , Melanoma/metabolism , Animals , Cell Line, Tumor , Cell Membrane/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Glucosylceramides/genetics , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mice , Necrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...