Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(1): 206-220, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33330942

ABSTRACT

Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.


Subject(s)
Molecular Chaperones/physiology , Multiprotein Complexes/physiology , Peptide Chain Elongation, Translational/physiology , Protein Folding , Proteostasis/physiology , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Alleles , Loss of Function Mutation , Molecular Chaperones/genetics , Mutation, Missense , Peptidyl Transferases/physiology , Point Mutation , Recombinant Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/physiology , Ribosomes/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
2.
Oncotarget ; 9(14): 11592-11603, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29545922

ABSTRACT

Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. In vivo antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA-2 proficient cancers.

3.
PLoS Genet ; 11(10): e1005565, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26447800

ABSTRACT

Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S assembly site in the nucleus.


Subject(s)
Molecular Chaperones/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Nucleus/genetics , Molecular Chaperones/metabolism , RNA, Ribosomal/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae
4.
RNA Biol ; 12(8): 838-46, 2015.
Article in English | MEDLINE | ID: mdl-26151772

ABSTRACT

Evolution has provided eukaryotes with mechanisms that impede immature and/or aberrant ribosomes to engage in translation. These mechanisms basically either prevent the nucleo-cytoplasmic export of these particles or, once in the cytoplasm, the release of associated assembly factors, which interfere with the binding of translation initiation factors and/or the ribosomal subunit joining. We have previously shown that aberrant yeast 40S ribosomal subunits containing the 20S pre-rRNA can engage in translation. In this study, we describe that cells harbouring the dob1-1 allele, encoding a mutated version of the exosome-assisting RNA helicase Mtr4, accumulate otherwise nuclear pre-60S ribosomal particles containing the 7S pre-rRNA in the cytoplasm. Polysome fractionation analyses revealed that these particles are competent for translation and do not induce elongation stalls. This phenomenon is rather specific since most mutations in other exosome components or co-factors, impairing the 3' end processing of the mature 5.8S rRNA, accumulate 7S pre-rRNAs in the nucleus. In addition, we confirm that pre-60S ribosomal particles containing either 5.8S + 30 or 5.8S + 5 pre-rRNAs also engage in translation elongation. We propose that 7S pre-rRNA processing is not strictly required for pre-60S r-particle export and that, upon arrival in the cytoplasm, there is no specific mechanism to prevent translation by premature pre-60S r-particles containing 3' extended forms of mature 5.8S rRNA.


Subject(s)
Protein Biosynthesis , RNA Precursors/genetics , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Saccharomyces cerevisiae/genetics , Blotting, Northern , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Fungal , In Situ Hybridization, Fluorescence , Microscopy, Fluorescence , Mutation , RNA Precursors/metabolism , RNA, Fungal/metabolism , RNA, Ribosomal/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
PLoS Genet ; 10(3): e1004205, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24603549

ABSTRACT

Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3' end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.


Subject(s)
Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Saccharomyces cerevisiae/genetics , Alleles , Cytoplasm/genetics , Cytoplasm/metabolism , Eukaryotic Initiation Factors/genetics , Mutation , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , RNA Precursors/genetics , RNA, Ribosomal, 18S/genetics , Ribosomal Protein L3 , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism
6.
Nucleic Acids Res ; 37(22): 7519-32, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19789271

ABSTRACT

Mrt4 is a nucleolar component of the ribosome assembly machinery that shares notable similarity and competes for binding to the 25S rRNA GAR domain with the ribosomal protein P0. Here, we show that loss of function of either P0 or Mrt4 results in a deficit in 60S subunits, which is apparently due to impaired rRNA processing of 27S precursors. Mrt4, which shuttles between the nucleus and the cytoplasm, defines medium pre-60S particles. In contrast, P0 is absent from medium but present in late/cytoplasmic pre-60S complexes. The absence of Mrt4 notably increased the amount of P0 in nuclear Nop7-TAP complexes and causes P0 assembly to medium pre-60S particles. Upon P0 depletion, Mrt4 is relocated to the cytoplasm within aberrant 60S subunits. We conclude that Mrt4 controls the position and timing of P0 assembly. In turn, P0 is required for the release of Mrt4 and exchanges with this factor at the cytoplasm. Our results also suggest other P0 assembly alternatives.


Subject(s)
Ribosomal Proteins/physiology , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Deletion , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
Nucleic Acids Res ; 37(11): 3514-21, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19346338

ABSTRACT

In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.


Subject(s)
Ribosomal Proteins/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Binding Sites , Models, Molecular , Protein Structure, Tertiary , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Mol Microbiol ; 72(1): 69-84, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19210616

ABSTRACT

The post-translational modifier ubiquitin is generated exclusively by proteolytic cleavage of precursor proteins. In Saccharomyces cerevisiae, cleavage of the linear precursor proteins releases ubiquitin and the C-terminally fused ribosomal proteins Rpl40 (Ubi1/2 precursor) and Rps31 (Ubi3 precursor), which are part of mature 60S and 40S ribosomal subunits respectively. In this study, we analysed the effects of ubi3 mutations that interfere with cleavage of the ubiquitin-Rps31 fusion protein. Strikingly, the lethal ubi3+P77 mutation, which abolished cleavage almost completely, led to a rapid G1 cell cycle arrest upon genetic depletion of wild-type UBI3. Under these conditions, the otherwise unstable Ubi3+P77 protein was efficiently assembled into translation-competent 40S ribosomal subunits. In contrast to the cleavage-affecting mutations, deletion of the ubiquitin moiety from UBI3 led to a decrease in 40S ribosomal subunits and to the incorporation of the 20S pre-rRNA into polyribosomes. Altogether, our findings provide additional evidence that the initial presence of the ubiquitin moiety of Ubi3 contributes to the efficient production of 40S ribosomal subunits and they suggest that ubiquitin release is a prerequisite for their functional integrity.


Subject(s)
Ribosome Subunits, Small, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Cell Cycle , Mutation , Polyribosomes/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Ribosome Subunits, Small, Eukaryotic/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...