Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542108

ABSTRACT

The increasing demand for innovative approaches in wound healing and skin regeneration has prompted extensive research into advanced biomaterials. This review focuses on showcasing the unique properties of sustainable silk-based particulate systems in promoting the controlled release of pharmaceuticals and bioactive agents in the context of wound healing and skin regeneration. Silk fibroin and sericin are derived from well-established silkworm production and constitute a unique biocompatible and biodegradable protein platform for the development of drug delivery systems. The controlled release of therapeutic compounds from silk-based particulate systems not only ensures optimal bioavailability but also addresses the challenges associated with conventional delivery methods. The multifaceted benefits of silk proteins, including their inherent biocompatibility, versatility, and sustainability, are explored in this review. Furthermore, the intricate mechanisms by which controlled drug release takes place from silk-based carriers are discussed.


Subject(s)
Fibroins , Silk , Silk/metabolism , Delayed-Action Preparations , Wound Healing , Skin/metabolism , Biocompatible Materials/therapeutic use , Fibroins/metabolism
2.
Adv Sci (Weinh) ; 11(24): e2307921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477181

ABSTRACT

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1 K-1) compared to the transverse direction (24 mW m-1 K-1). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2 g-1) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.


Subject(s)
Cellulose , Printing, Three-Dimensional , Cellulose/chemistry , Mice , Animals , NIH 3T3 Cells , Gels/chemistry , Nanofibers/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry
3.
Gels ; 10(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38247736

ABSTRACT

Upconversion nanoparticles (UCNPs) are under consideration for their use as bioimaging probes with enhanced optical performance for real time follow-up under non-invasive conditions. Photostable and core-shell NaYF4:Yb3+, Er3+-SiO2 UCNPs obtained by a novel and simple co-precipitation method from lanthanide nitrates or oxides were herein synthesized for the first time. The sol-gel Stöber method followed by oven or supercritical gel drying was used to confer biocompatible surface properties to UCNPs by the formation of an ultrathin silica coating. Upconversion (UC) spectra were studied to evaluate the fluorescence of UCNPs upon red/near infrared (NIR) irradiation. ζ-potential measurements, TEM analyses, XRD patterns and long-term physicochemical stability were also assessed and confirmed that the UCNPs co-precipitation synthesis is a shape- and phase-controlling approach. The bio- and hemocompatibility of the UCNPs formulation with the highest fluorescence intensity was evaluated with murine fibroblasts and human blood, respectively, and provided excellent results that endorse the efficacy of the silica gel coating. The herein synthesized UCNPs can be regarded as efficient fluorescent probes for bioimaging purposes with the high luminescence, physicochemical stability and biocompatibility required for biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL