Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Transl Lung Cancer Res ; 12(7): 1414-1424, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37577300

ABSTRACT

Background: Surgery is regarded as the treatment's cornerstone for early stage and locally advanced non-small cell lung cancer (NSCLC) whenever the tumor is considered resectable. Liquid biopsy is one of the most promising research areas in oncology in the last 10 years, providing a useful non-invasive tool to detect and monitor cancer. The prognostic value of circulating tumor cells (CTCs) has been studied in different cancer types and had been related with a higher risk of relapse and worse prognosis. The aim of this study is to evaluate the prognostic value of CTC detection in patients with stage I-IIIA NSCLC treated with surgery. Methods: We conducted a prospective, single-center study of 180 consecutive patients with resected and pathological confirmed stage I to IIIA (TNM AJCC/UICC 8th edition) NSCLC. Patients' blood samples were processed and CTCs were characterized before and after the surgery. A cohort of patients had CTC determination after chemotherapy and surgery. Cut-off points were established in 1 and 5 CTCs for statistical analysis. Results: A proportion of 76.7% had at least 1 CTC before the surgery, and 30.6% had 5 or more, while 55.9% had at least 1 CTC after surgery, and 8.3% had 5 or more. We found no correlation between preoperative CTC detection for a cut-off of 5 with neither overall survival (OS) [hazard ratio (HR): 0.99, P=0.887], disease-free survival (DFS) (HR: 0.95, P=0.39) nor relapse (32.7% vs. 28.8%, P=0.596). We also did not find a correlation between postoperative CTCs detection for a cut-off of 5 with either OS (HR: 1.01, P=0.808), DFS (HR: 0.95, P=0.952) or relapse (26.7% vs. 29.5%, P=0.83). The mean change in the number of CTCs over time between preoperative and postoperative samples was 2.13, with a standard deviation of 6.78. Conclusions: Despite the large cohort of patients included in this study, CTC monitoring in the perioperative setting was not correlated with relapse, DFS or OS in our study, and therefore cannot be recommended as a reliable biomarker for minimal residual disease (MRD) after surgery.

2.
Front Immunol ; 14: 1209923, 2023.
Article in English | MEDLINE | ID: mdl-37483622

ABSTRACT

Background and objective: Dimethyl fumarate (DMF) is an immunomodulatory drug approved for the therapy of multiple sclerosis (MS). The identification of response biomarkers to DMF is a necessity in the clinical practice. With this aim, we studied the immunophenotypic and transcriptomic changes produced by DMF in peripheral blood mononuclear cells (PBMCs) and its association with clinical response. Material and methods: PBMCs were obtained from 22 RRMS patients at baseline and 12 months of DMF treatment. Lymphocyte and monocyte subsets, and gene expression were assessed by flow cytometry and next-generation RNA sequencing, respectively. Clinical response was evaluated using the composite measure "no evidence of disease activity" NEDA-3 or "evidence of disease activity" EDA-3 at 2 years, classifying patients into responders (n=15) or non-responders (n=7), respectively. Results: In the whole cohort, DMF produced a decrease in effector (TEM) and central (TCM) memory T cells in both the CD4+ and CD8+ compartments, followed by an increase in CD4+ naïve T cells. Responder patients presented a greater decrease in TEM lymphocytes. In addition, responder patients showed an increase in NK cells and were resistant to the decrease in the intermediate monocytes shown by non-responders. Responder patients also presented differences in 3 subpopulations (NK bright, NK dim and CD8 TCM) at baseline and 4 subpopulations (intermediate monocytes, regulatory T cells, CD4 TCM and CD4 TEMRA) at 12 months. DMF induced a mild transcriptional effect, with only 328 differentially expressed genes (DEGs) after 12 months of treatment. The overall effect was a downregulation of pro-inflammatory genes, chemokines, and activators of the NF-kB pathway. At baseline, no DEGs were found between responders and non-responders. During DMF treatment a differential transcriptomic response was observed, with responders presenting a higher number of DEGs (902 genes) compared to non-responders (189 genes). Conclusions: Responder patients to DMF exhibit differences in monocyte and lymphocyte subpopulations and a distinguishable transcriptomic response compared to non-responders that should be further studied for the validation of biomarkers of treatment response to DMF.


Subject(s)
Dimethyl Fumarate , Multiple Sclerosis , Humans , Dimethyl Fumarate/therapeutic use , Immunosuppressive Agents/therapeutic use , Leukocytes, Mononuclear , Killer Cells, Natural , Biomarkers
3.
J Immunother Cancer ; 9(8)2021 08.
Article in English | MEDLINE | ID: mdl-34446577

ABSTRACT

BACKGROUND: Pneumonitis (Pn) is one of the main immune-related adverse effects, having a special importance in lung cancer, since they share affected tissue. Despite its clinical relevance, Pn development remains an unpredictable treatment adverse effect, whose mechanisms are mainly unknown, being even more obscure when it is associated to chemoimmunotherapy. METHODS: In order to identify parameters associated to treatment related Pn, we analyzed clinical variables and molecular parameters from 46 patients with potentially resectable stage IIIA non-small-cell lung cancer treated with neoadjuvant chemoimmunotherapy included in the NADIM clinical trial (NCT03081689). Pn was defined as clinical or radiographic evidence of lung inflammation without alternative diagnoses, from treatment initiation to 180 days. RESULTS: Among 46 patients, 12 developed Pn (26.1%). Sex, age, smoking status, packs-year, histological subtype, clinical or pathological response, progression-free survival, overall survival and number of nivolumab cycles, were not associated to Pn development. Regarding molecular parameters at diagnosis, Pn development was not associated to programmed death ligand 1, TPS, T cell receptor repertoire parameters, or tumor mutational burden. However, patients who developed Pn had statistically significant lower blood median levels of platelet to monocyte ratio (p=0.012) and teratocarcinoma-derived growth factor 1 (p=0.013; area under the curve (AUC) 0.801), but higher median percentages of natural killers (NKs) (p=0.019; AUC 0.786), monocytes (p=0.017; AUC 0.791), MSP (p=0.006; AUC 0.838), PARN (p=0.017; AUC 0.790), and E-Cadherin (p=0.022; AUC 0.788). In addition, the immune scenario of Pn after neoadjuvant treatment involves: high levels of neutrophils and NK cells, but low levels of B and T cells in peripheral blood; increased clonality of intratumoral T cells; and elevated plasma levels of several growth factors (EGF, HGF, VEGF, ANG-1, PDGF, NGF, and NT4) and inflammatory cytokines (MIF, CCL16, neutrophil gelatinase-associated lipocalin, BMP-4, and u-PAR). CONCLUSIONS: Although statistically underpowered, our results shed light on the possible mechanisms behind Pn development, involving innate and adaptative immunity, and open the possibility to predict patients at high risk. If confirmed, this may allow the personalization of both, the surveillance strategy and the therapeutic approaches to manage Pn in patients receiving chemoimmunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/complications , Lung Neoplasms/complications , Pneumonia/etiology , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Female , Humans , Lung Neoplasms/drug therapy , Male , Middle Aged , Pneumonia/pathology
4.
Clin Transl Med ; 11(7): e491, 2021 07.
Article in English | MEDLINE | ID: mdl-34323406

ABSTRACT

BACKGROUND: Immunotherapy is being tested in early-stage non-small cell lung cancer (NSCLC), and achieving higher rates of complete pathological responses (CPR) as compared to standard of care. Early identification of CPR patients has vital clinical implications. In this study, we focused on basal peripheral immune cells and their treatment-related changes to find biomarkers associated to CPR. METHODS: Blood from 29 stage IIIA NSCLC patients participating in the NADIM trial (NCT03081689) was collected at diagnosis and post neoadjuvant treatment. More than 400 parameters of peripheral blood mononuclear cells (PBMCs) phenotype and plasma soluble factors were analyzed. RESULTS: Neoadjuvant chemoimmunotherapy altered more than 150 immune parameters. At diagnosis, 11 biomarkers associated to CPR were described, with an area under the ROC curve >0.70 and p-value <.05. CPR patients had significantly higher levels of CD4+ PD-1+ cells, NKG2D, and CD56 expression on T CD56 cells, intensity of CD25 expression on CD4+ CD25hi+ cells and CD69 expression on intermediate monocytes; but lower levels of CD3+ CD56- CTLA-4+ cells, CD14++ CD16+ CTLA-4+ cells, CTLA-4 expression on T CD56 cells and lower levels of b-NGF, NT-3, and VEGF-D in plasma compared to non-CPR. Post treatment, CPR patients had significantly higher levels of CD19 expression on B cells, BCMA, 4-1BB, MCSF, and PARC and lower levels of MPIF-1 and Flt-3L in plasma compared to non-CPR. CONCLUSIONS: Patients achieving CPR seem to have a distinctive peripheral blood immune status at diagnosis, even showing different immune response to treatment. These results reinforce the different biology behind CPR and non-CPR responses.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/therapy , Aged , Antigens, CD19/metabolism , Antineoplastic Agents/therapeutic use , Area Under Curve , B-Cell Maturation Antigen/blood , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Immunotherapy , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Neoadjuvant Therapy , Neoplasm Staging , Nerve Growth Factor/blood , Neurotrophin 3/blood , ROC Curve , Vascular Endothelial Growth Factor D/blood
5.
Free Radic Biol Med ; 135: 167-181, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30880247

ABSTRACT

BACKGROUND: Platinum-based chemotherapy remains the standard of care for most lung cancer cases. However chemoresistance is often developed during the treatment, limiting clinical utility of this drug. Recently, the ability of tumor cells to adapt their metabolism has been associated to resistance to therapies. In this study, we first described the metabolic reprogramming of Non-Small Cell Lung Cancer (NSCLC) in response to cisplatin treatment. METHODS: Cisplatin-resistant versions of the A549, H1299, and H460 cell lines were generated by continuous drug exposure. The long-term metabolic changes, as well as, the early response to cisplatin treatment were analyzed in both, parental and cisplatin-resistant cell lines. In addition, four Patient-derived xenograft models treated with cisplatin along with paired pre- and post-treatment biopsies from patients were studied. Furthermore, metabolic targeting of these changes in cell lines was performed downregulating PGC-1α expression through siRNA or using OXPHOS inhibitors (metformin and rotenone). RESULTS: Two out of three cisplatin-resistant cell lines showed a stable increase in mitochondrial function, PGC1-α and mitochondrial mass with reduced glycolisis, that did not affect the cell cycle. This phenomenon was confirmed in vivo. Post-treatment NSCLC tumors showed an increase in mitochondrial mass, PGC-1α, and a decrease in the GAPDH/MT-CO1 ratio. In addition, we demonstrated how a ROS-mediated metabolism reprogramming, involving PGC-1α and increased mitochondrial mass, is induced during short-time cisplatin exposure. Moreover, we tested how cells with increased PGC-1a induced by ZLN005 treatment, showed reduced cisplatin-driven apoptosis. Remarkably, the long-term metabolic changes, as well as the metabolic reprogramming during short-time cisplatin exposure can be exploited as an Achilles' heel of NSCLC cells, as demonstrated by the increased sensitivity to PGC-1α interference or OXPHOS inhibition using metformin or rotenone. CONCLUSION: These results describe a new cisplatin resistance mechanism in NSCLC based on a metabolic reprogramming that is therapeutically exploitable through PGC-1α downregulation or OXPHOS inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , A549 Cells , Benzimidazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cellular Reprogramming/drug effects , Cisplatin/adverse effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oxidative Phosphorylation/drug effects , Reactive Oxygen Species/metabolism
6.
Free Radic Biol Med ; 130: 163-173, 2019 01.
Article in English | MEDLINE | ID: mdl-30391585

ABSTRACT

Lung cancer is a major public health problem due to its high incidence and mortality rate. The altered metabolism in lung cancer is key for the diagnosis and has implications on both, the prognosis and the response to treatments. Although Cancer-associated fibroblasts (CAFs) are one of the major components of the tumor microenvironment, little is known about their role in lung cancer metabolism. We studied tumor biopsies from a cohort of 12 stage IIIA lung adenocarcinoma patients and saw a positive correlation between the grade of fibrosis and the glycolysis phenotype (Low PGC-1α and High GAPDH/MT-CO1 ratio mRNA levels). These results were confirmed and extended to other metabolism-related genes through the in silico data analysis from 73 stage IIIA lung adenocarcinoma patients available in TCGA. Interestingly, these relationships are not observed with the CAFs marker α-SMA in both cohorts. To characterize the mechanism, in vitro co-culture studies were carried out using two NSCLC cell lines (A549 and H1299 cells) and two different fibroblast cell lines. Our results confirm that a metabolic reprogramming involving ROS and TGF-ß signaling occurs in lung cancer cells and fibroblasts independently of α-SMA induction. Under co-culture conditions, Cancer-Associated fibroblasts increase their glycolytic ability. On the other hand, tumor cells increase their mitochondrial function. Moreover, the differential capability among tumor cells to induce this metabolic shift and also the role of the basal fibroblasts Oxphos Phosphorylation (OXPHOS) function modifying this phenomenon could have implications on both, the diagnosis and prognosis of patients. Further knowledge in the mechanism involved may allow the development of new therapies.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cancer-Associated Fibroblasts/metabolism , Lung Neoplasms/metabolism , Lung/pathology , Transforming Growth Factor beta/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Cancer-Associated Fibroblasts/pathology , Cellular Reprogramming , Coculture Techniques , Fibrosis , Glycolysis , Humans , Lung Neoplasms/pathology , Neoplasm Staging , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Microenvironment
7.
Front Immunol ; 9: 1693, 2018.
Article in English | MEDLINE | ID: mdl-30090102

ABSTRACT

BACKGROUND: Fingolimod is a functional sphingosine-1-phosphate antagonist approved for the treatment of multiple sclerosis (MS). Fingolimod affects lymphocyte subpopulations and regulates gene expression in the lymphocyte transcriptome. Translational studies are necessary to identify cellular and molecular biomarkers that might be used to predict the clinical response to the drug. In MS patients, we aimed to clarify the differential effects of fingolimod on T, B, and natural killer (NK) cell subsets and to identify differentially expressed genes in responders and non-responders (NRs) to treatment. MATERIALS AND METHODS: Samples were obtained from relapsing-remitting multiple sclerosis patients before and 6 months after starting fingolimod. Forty-eight lymphocyte subpopulations were measured by flow cytometry based on surface and intracellular marker analysis. Transcriptome sequencing by next-generation technologies was used to define the gene expression profiling in lymphocytes at the same time points. NEDA-3 (no evidence of disease activity) and NEDA-4 scores were measured for all patients at 1 and 2 years after beginning fingolimod treatment to investigate an association with cellular and molecular characteristics. RESULTS: Fingolimod affects practically all lymphocyte subpopulations and exerts a strong effect on genetic transcription switching toward an anti-inflammatory and antioxidant response. Fingolimod induces a differential effect in lymphocyte subpopulations after 6 months of treatment in responder and NR patients. Patients who achieved a good response to the drug compared to NR patients exhibited higher percentages of NK bright cells and plasmablasts, higher levels of FOXP3, glucose phosphate isomerase, lower levels of FCRL1, and lower Expanded Disability Status Scale at baseline. The combination of these possible markers enabled us to build a probabilistic linear model to predict the clinical response to fingolimod. CONCLUSION: MS patients responsive to fingolimod exhibit a recognizable distribution of lymphocyte subpopulations and a different pretreatment gene expression signature that might be useful as a biomarker.

8.
Oncotarget ; 9(1): 488-494, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29416630

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) levels correlate well with tumor bulk. In this paper we aim to estimate the prognostic value of the dynamic quantification of ctDNA levels. MATERIALS AND METHODS: A total of 251 serial plasma samples from 41 non-small-cell lung cancer patients who carried an activating EGFR mutation were analysed by digital PCR. For survival analysis, ctDNA levels were computed as a time-dependent covariate. RESULTS: Dynamic ctDNA measurements had prognostic significance (hazard ratio for overall survival and progression free survival according to p.T790M mutant allele frequency; 2.676 and 2.71 respectively; P < 0.05). In the same way, patients with p.T790M-negative or unchanging or decreasing plasma levels of sensitizing EGFR mutation were 12 and 4.8 times more likely to maintain response or stable disease, respectively, than patients in which the opposite occurred (P < 0.05).On average, the p.T790M mutation was detected in plasma 51 days before the assessment of progression disease by CT-scan. Finally, ctDNA outperformed CTCs for assessing tumor progression (P = 0.021). CONCLUSIONS: The appearance or increase in a unit of the p.T790M allele frequency almost triples the risk of death and progression. This information can be used to design clinical trials aiming to estimate whether T790M positive patients should start second line treatment based on molecular data rather than imaging data.

9.
Sci Rep ; 7(1): 16661, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192176

ABSTRACT

Lung cancer remains the leading cause of cancer-related death worldwide, with one-third diagnosed with locally advanced (stage III) disease. Preoperative induction chemo-radiotherapy is key for the treatment of these patients, however conventional cisplatin based approaches has apparently reached a plateau of effectiveness. In the search for new therapies, the targeting of tumor metabolism is revealed as an interesting option to improve the patient's responses. Here we describe the importance of PGC-1alpha and GAPDH/MT-CO1 ratio levels as surrogates of the Warburg effect from a series of 28 stage III NSCLC patients, on PFS, OS and PET uptake. Moreover, our results show a great variability between tumors of different individuals, ranging from very glycolytic to more OXPHOS-dependent tumors, which compromises the success of therapies directed to metabolism. In this sense, using 3 different cell lines, we describe the relevance of Warburg effect on the response to metabolism-targeted therapies. Specifically, we show that the inhibitory effect of metformin on cell viability depends on cell's dependence on the OXPHOS system. The results on cell lines, together with the results of PGC-1alpha and GAPDH/MT-CO1 as biomarkers on patient's biopsies, would point out what type of patients would benefit more from the use of these drugs.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Biomarkers , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Gene Expression , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glycolysis/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Metformin/pharmacology , Metformin/therapeutic use , Molecular Targeted Therapy , Neoplasm Staging , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Prognosis , Reactive Oxygen Species/metabolism , Survival Analysis
11.
Oncotarget ; 8(35): 59408-59416, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28938646

ABSTRACT

BACKGROUND: The identification of anaplastic lymphoma kinase (ALK) rearrangements is found in approximately 5% of non-small-cell lung cancers (NSCLCs). However, the development of liquid biopsies as a diagnostic tool is less developed in these cases. This study investigates the use of CTCs during treatment, together with an extended follow-up to correlate with clinical evolution. PATIENTS AND METHODS: A total of 13 patients out of a cohort of 212 patients with lung adenocarcinoma, presented ALK rearrangements (6%) confirmed by tumor biopsy. A total of 60 serial blood samples were collected from these patients who were prospectively enrolled in the study. RESULTS: All patients had a positive CTC count at baseline (mean = 3). The median follow-up was 9 months (range 1-17 months). Three patients underwent surgery and their CTC counts decreased after the procedure but still remained detectable. After radiotherapy, 3 cases showed an average decrease of 5 CTCs. A total of 6 patients were treated with ALK inhibitors and a partial response was observed in 3 of them, who also presented decreased CTC counts. The other 3 patients presented primary resistance, and their CTC counts were higher than those obtained prior to progression. CONCLUSION: We believe that the use of CTCs for dynamic monitoring of NSCLC with ALK rearrangement and to detect disease persistence or recurrence may be a reliable technique. CTC counts may also have potential use to monitor the efficacy of ALK inhibitors, facilitating detection of resistance to treatment.

12.
Carcinogenesis ; 36(5): 574-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25750171

ABSTRACT

APRIL (a proliferation-inducing ligand) is a cytokine of the tumor necrosis factor family associated mainly with hematologic malignancies. APRIL is also overexpressed in breast carcinoma tissue lesions, although neither its role in breast tumorigenesis nor the underlying molecular mechanism is known. Here, we show that several breast cancer cell lines express APRIL and both its receptors, B cell maturation antigen (BCMA) and transmembrane activator and CAML-interactor (TACI), independently of luminal or basal tumor cell phenotype, and that the mitogen-activated protein kinases p38, ERK1/2, and JNK1/2 are activated in response to APRIL. The inflammatory stimulus poly I:C, a toll-like receptor (TLR) 3 ligand, enhanced APRIL secretion. Silencing experiments decreased cell proliferation, demonstrating that APRIL is a critical autocrine factor for breast tumor growth. Studies of 4T1 orthotopic breast tumors in APRIL transgenic mice showed that an APRIL-enriched environment increased tumor growth and promoted lung metastasis associated with enhanced tumor cell proliferation; BCMA and TACI expression suggests that both participate in these processes. We detected APRIL, BCMA and TACI in human luminal, triple-negative breast carcinomas and HER2 breast carcinomas, with increased levels in more aggressive basal tumors. APRIL was observed near Ki67(+) nuclei and was distributed heterogeneously in the cancer cells, in the leukocyte infiltrate, and in the myoepithelial layer adjacent to the tumor area; these results imply that APRIL provides proliferation signals to tumor cells through paracrine and autocrine signaling. Our study identifies participation of APRIL signaling in breast cancer promotion; we propose impairment of this pathway as a potential therapeutic strategy.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Lung Neoplasms/secondary , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Animals , Apoptosis , B-Cell Maturation Antigen/genetics , B-Cell Maturation Antigen/metabolism , Biomarkers, Tumor/genetics , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Cell Proliferation , Female , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transmembrane Activator and CAML Interactor Protein/genetics , Transmembrane Activator and CAML Interactor Protein/metabolism , Tumor Cells, Cultured , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Xenograft Model Antitumor Assays
13.
Hum Mol Genet ; 23(2): 467-78, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24067531

ABSTRACT

Tumor-derived exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information through the horizontal transfer of mRNAs, microRNAs and proteins during tumorigenesis. The exosomal content has been described as biologically active when taken up by the recipient cell. Identifying the specific molecular cargo of exosomes will help to determine their function in specific steps of the tumorigenic process. Here we evaluate whether ΔNp73 is selectively packaged in tumor-derived exosomes, its function in the acceptor cells in vitro and in vivo and its prognosis potential in cancer. ΔNp73 messenger is enriched in tumor-derived exosomes, suggesting its active sorting in these microvesicles. We observed the transmission of this exosome cargo to different cell types and how it confers proliferation potential and chemoresistance to the acceptor cells in vitro and in animal models. Finally, our data support the potential prognostic value of exosomal ΔNp73 in colon cancer patients.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Exosomes/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Messenger/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Female , HCT116 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Prognosis , RNA, Messenger/metabolism , Survival Rate , Tumor Protein p73
14.
J Biol Chem ; 284(5): 2787-2794, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19059915

ABSTRACT

The cellular prion protein PrP(C) is synthesized as a family of four distinct forms. Of these, (Cyt)PrP is a minor member that segregates outside of the secretory route and can generate cytotoxic forms. Using signal sequence mutants, we found that (Cyt)PrP is translated from a downstream AUG (coding for Met-8 in human PrP or Met-15 in Syrian hamster PrP). Shortening of the signal sequence dictated the spillage of this isoform into the cytosol, from where it accessed the nucleus or formed insoluble cytosolic aggregates if the proteasome is inhibited. The PrP isoform isolated from the nuclear fractions of cell and brain homogenates was partially SUMO-1-conjugated. Expression of HaPrP(M15) in cells caused an antiproliferative phenotype due to a cell cycle arrest at the G(0)/G(1) phase. The identification of this PrP isoform and its properties provides novel insight into PrP(C) physiological and pathological functions.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Prions/biosynthesis , Protein Isoforms/biosynthesis , Animals , Base Sequence , Blotting, Western , Cricetinae , DNA Primers , Humans , Immunoprecipitation , Mesocricetus , Methionine/chemistry , Prions/chemistry , Protein Isoforms/chemistry
15.
Microsc Res Tech ; 72(1): 1-11, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18785251

ABSTRACT

We report a highly specific, sensitive, and robust method for analyzing fluorescence resonance energy transfer (FRET) based on spectral laser scanning confocal microscopy imaging. The lambda FRET (lambdaFRET) algorithm comprises imaging of a FRET sample at multiple emission wavelengths rendering a FRET spectrum, which is separated into its donor and acceptor components to obtain a pixel-based calculation of FRET efficiency. The method uses a novel off-line precalibration procedure for spectral bleed-through correction based on the acquisition of reference reflection images, which simplifies the method and reduces variability. LambdaFRET method was validated using structurally characterized FRET standards with variable linker lengths and stoichiometries designed for this purpose. LambdaFRET performed better than other well-established methods, such as acceptor photobleaching and sensitized emission-based methods, in terms of specificity, reproducibility, and sensitivity to distance variations. Moreover, lambdaFRET analysis was unaffected by high fluorochrome spectral overlap and cellular autofluorescence. The lambdaFRET method demonstrated outstanding performance in intra- and intermolecular FRET analysis in both fixed and live cell imaging studies.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Microscopy, Confocal/methods , Bacterial Proteins/analysis , Cell Line, Tumor , Gamma Rays , Green Fluorescent Proteins/analysis , Humans , Hyaluronan Receptors/analysis , Hyaluronan Receptors/metabolism , Luminescent Proteins/analysis , Microfilament Proteins/analysis , Microfilament Proteins/metabolism , Protein Binding , Sensitivity and Specificity
16.
EMBO J ; 26(6): 1499-510, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17332756

ABSTRACT

MT1-matrix metalloproteinase (MT1-MMP) is one of the most critical factors in the invasion machinery of tumor cells. Subcellular localization to invasive structures is key for MT1-MMP proinvasive activity. However, the mechanism driving this polarized distribution remains obscure. We now report that polarized exocytosis of MT1-MMP occurs during MDA-MB-231 adenocarcinoma cell migration into collagen type I three-dimensional matrices. Polarized trafficking of MT1-MMP is triggered by beta1 integrin-mediated adhesion to collagen, and is required for protease localization at invasive structures. Localization of MT1-MMP within VSV-G/Rab8-positive vesicles, but not in Rab11/Tf/TfRc-positive compartment in invasive cells, suggests the involvement of the exocytic traffic pathway. Furthermore, constitutively active Rab8 mutants induce MT1-MMP exocytic traffic, collagen degradation and invasion, whereas Rab8- but not Rab11-knockdown inhibited these processes. Altogether, these data reveal a novel pathway of MT1-MMP redistribution to invasive structures, exocytic vesicle trafficking, which is crucial for its role in tumor cell invasiveness. Mechanistically, MT1-MMP delivery to invasive structures, and therefore its proinvasive activity, is regulated by Rab8 GTPase.


Subject(s)
Exocytosis/physiology , Matrix Metalloproteinase 14/metabolism , Neoplasm Invasiveness/physiopathology , rab GTP-Binding Proteins/metabolism , Cell Line, Tumor , Cell Movement/physiology , Collagen/metabolism , Female , Genetic Vectors , Humans , Integrin beta1/metabolism , Microscopy, Fluorescence , Microspheres , Models, Biological , Photobleaching , Protein Transport/physiology , RNA Interference , RNA, Small Interfering/genetics , Transport Vesicles/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...