Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(16): 166801, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474917

ABSTRACT

We study the Anderson transition on a generic model of random graphs with a tunable branching parameter 1

2.
Article in English | MEDLINE | ID: mdl-26465547

ABSTRACT

We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model, and a random matrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong-enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.

3.
Phys Rev Lett ; 112(23): 234101, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24972209

ABSTRACT

We expose two scenarios for the breakdown of quantum multifractality under the effect of perturbations. In the first scenario, multifractality survives below a certain scale of the quantum fluctuations. In the other one, the fluctuations of the wave functions are changed at every scale and each multifractal dimension smoothly goes to the ergodic value. We use as generic examples a one-dimensional dynamical system and the three-dimensional Anderson model at the metal-insulator transition. Based on our results, we conjecture that the sensitivity of quantum multifractality to perturbation is universal in the sense that it follows one of these two scenarios depending on the perturbation. We also discuss the experimental implications.

4.
Article in English | MEDLINE | ID: mdl-11138048

ABSTRACT

A random walk with exponentially varying step, modeling damped or amplified diffusion, is studied. Each step is equal to the previous one multiplied by a step factor s (01/s relating different processes. For s<1/2 and s>2, the process is retrodictive (i.e., every final position can be reached by a unique path) and the set of all possible final points after infinite steps is fractal. For step factors in the interval [1/2,2], some cases result in smooth density distributions, other cases present overlapping self-similarity and there are values of the step factor for which the distribution is singular without a density function.

SELECTION OF CITATIONS
SEARCH DETAIL