Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(48): 105808-105828, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37721674

ABSTRACT

Microbial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions. The initial microbial communities of the three materials strongly differed. Incubations induced an increase of microbial biomass and an evolution of the microbial communities' structures and compositions, which diverged in different redox conditions. The presence of active bacteria always influenced the mobility of Sb, except in the neutral pH waste incubated in oxic conditions. The effect of active microbial activities in oxic conditions was dependent on the material: Sb oxic release was biologically amplified with the acidic waste, but attenuated with the sediment. Different bacterial genera involved in Sb, Fe and S oxidation or reduction were present and/or grew during incubation of each material. The results highlighted the wide diversity of microbial communities and metabolisms at the small geographic scale of a mining site and their strong implication in Sb mobility.


Subject(s)
Antimony , Microbiota , Antimony/analysis , Oxidation-Reduction , Bacteria , Mining
2.
Environ Geochem Health ; 45(1): 151-170, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34677729

ABSTRACT

Mining affects the environment, particularly through the persistence of accumulation of tailings materials; this is aggravated under tropical climatic conditions, which favours the release of potentially toxic elements (PTEs) bioavailable to the local flora and fauna and supposing a risk to human health. The Remance gold mine (Panamá), exploited intermittently for more than 100 years, and has remained derelict for over 20 years. Within the area live farmers who carry out subsistence agriculture and livestock activities. The objective of this study has been to study the transference of PTEs in the local agricultural soil-plants system, with the goal of identifying their bioavailability to perform a human risk assessment. The results obtained of the Bioaccumulation coefficient in local plants show very weak to strong absorption of As (< 0.001-1.50), Hg (< 0.001-2.38), Sb (0.01-7.83), Cu (0.02-2.89), and Zn (0.06-5.32). In the case of Cu in grass (18.3 mg kg-1) and plants (16.9 mg kg-1) the concentrations exceed the maximum authorised value in animal nutrition for ruminants (10 mg kg-1). The risk to human health for edible plants exceeds the non-carcinogenic risk for rice, corn, cassava, and tea leaves for Sb (HQ 19.450, 18.304, 6.075, 1.830, respectively), the carcinogenic risk for Cu (CR = 2.3 × 10-3, 7.7 × 10 -4, 1.1 × 10-3, 1.0 × 10-3, respectively), and the carcinogenic risk for As in rice, corn and tea leaves (CR = 8 × 10-5, 3 × 10-5, 3 × 10-5, respectively). Urgent measures are needed to alleviate these effects.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/analysis , Biological Availability , Environmental Monitoring/methods , Plants , Soil , Risk Assessment/methods , Tea , Soil Pollutants/toxicity , Soil Pollutants/analysis
3.
Article in English | MEDLINE | ID: mdl-34501959

ABSTRACT

The derelict Remance gold mine is a possible source of pollution with potentially toxic elements (PTEs). In the study area, diverse mine waste has been left behind and exposed to weather conditions, and poses risks for soil, plants and water bodies, and also for the health of local inhabitants. This study sought to perform an ecological and health risk assessment of derelict gold mining areas with incomplete remediation, including: (i) characterizing the geochemical distribution of PTEs; (ii) assessing ecological risk by estimating the pollution load index (PLI) and potential ecological risk index (RI); (iii) assessing soil health by dehydrogenase activity; and iv) establishing non-carcinogenic (HI) and carcinogenic risks (CR) for local inhabitants. Soil health seems to depend on not only PTE concentrations, but also on organic matter (OM). Both indexes (PLI and RI) ranged from high to extreme near mining and waste accumulation sites. As indicated by both the HI and CR results, the mining area poses a health risk for local inhabitants and particularly for children. For this reason, it will be necessary to set up environmental management programs in the areas that are most affected (tailings and surrounding areas) and accordingly establish the best remediation strategies to minimize risks for the local population.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , Environmental Monitoring , Gold , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
4.
Environ Sci Pollut Res Int ; 28(4): 4573-4584, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32946058

ABSTRACT

Monazite ((Ce, La, Nd, Th) PO4) is a rare and strategic mineral that occurs naturally as an accessory and minor mineral in diverse igneous and metamorphic rocks. This mineral does not frequently form mineable ore deposits and it has different typologies, including those formed by endogenous processes (generally "yellow monazite" mineralizations) and those formed by exogenous processes ("gray monazite" mineralizations). The mineral is an important ore of Rare Earth Elements (REEs), which have been identified by the European Union as critical raw materials. Monazite can be considered a weathering-resistant mineral, and the mobility of the REE and associated elements is low. The study reported here concerns a mineralogical and geochemical assessment of the occurrence and risks associated with the presence of concentrations of monazite in a typical, well-developed, and representative red Mediterranean soil, in order to establish the associated risk with their future mining. The results confirmed that monazite ore is particularly poor in radioactive elements, and it is concentrated in the most surficial soil horizons. The chemical mobility of REEs present in the soil, as assessed by selective extraction with ammonium acetate in acidic media, follows the order Y > Dy > U > Tb > Gd > Eu > Sm > La > Th > Ce. The mobility of REEs contained in monazite proved to be higher than that of the REE compounds in the upper horizons of the soil profile suggesting the immobilization in other REE-containing minerals, while light REEs show lower mobility rates than heavy REEs, due to an immobilization of LREE by sorption with iron oxy-hydroxides. Further studies are required in order to obtain better speciation data for REEs in soils aimed to identify soluble and insoluble compounds.


Subject(s)
Metals, Rare Earth , Soil Pollutants , Environmental Monitoring , Metals, Rare Earth/analysis , Soil , Soil Pollutants/analysis , Spain
5.
Article in English | MEDLINE | ID: mdl-32650360

ABSTRACT

Elements in mining extracts can be potentially toxic if they are incorporated into soils, sediments or biota. Numerous approaches have been used to assess this problem, and these include sequential extractions and selective extractions. These two methods have limitations and advantages, and their combined use usually provides a rough estimate of the availability or (bio)availability of potentially toxic elements and, therefore, of their real potential as toxicants in food chains. These indirect speciation data are interesting in absolute terms, but in the work described here, this aspect was developed further by assessing the evolution of availability-related speciation in relation to the transport processes from the emission source, which are mainly fluvial- and wind-driven. This objective was achieved by characterizing tailings samples as the source of elements in soils and sediments at increasing distances to investigate the evolution of certain elements. The standard procedures employed included a sequential five-step extraction and a selective extraction with ammonium acetate. The results show that the highest percentages of Zn and Pb in tailings, soils and sediment samples are associated with oxyhydroxides, along with a significant presence of resistant mineralogical forms. In the case of Cd, its association with organic matter is the second-most important trapping mechanism in the area. The physicochemical mechanisms of transport did not transform the main mineralogical associations (oxyhydroxides and resistant mineralogical forms) along the transects, but they produced a chaotic evolution pattern for the other minor matrix associations for Zn and a decrease in exchangeable and carbonate-bound forms for Pb in soils. Interestingly, in sediments, these mobile forms showed a decrease in Zn and a chaotic evolution for Pb. The most probable reason for these observations is that Zn2+ can form smithsonite (ZnCO3) or hydrozincite (Zn5(CO3)2(OH)6), which explains the retention of a carbonate-bound form for Zn in the soil transect. In contrast, Pb and Cd can appear as different mineral phases. The order of (bio)availability was Pb > Zn > Cd in tailings but Cd > Pb > Zn in soils. The physicochemical processes involved in transport from tailings to soils produce an increase in Cd (bio)availability. The trend is a decrease in bioavailability on moving away from the source (tailings), with maximum values obtained for Cd near to the source area (200-400 m).


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Environmental Monitoring , Lead , Metals, Heavy/analysis , Soil Pollutants/analysis , Zinc/analysis
6.
Environ Sci Pollut Res Int ; 26(4): 3100-3114, 2019 Feb.
Article in English | MEDLINE | ID: mdl-28884256

ABSTRACT

Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality. With this objective, 200 soil samples were taken from agricultural areas distributed among the different geological domains present in the region. Analysis of these samples included evaluation of edaphological parameters (reactivity, electrical conductivity, organic matter content) and the geochemistry of major and trace elements by X-ray fluorescence. The dataset obtained was statistically analyzed for major elements and, in the case of trace elements, was normalized with respect to Al and analyzed using the relative cumulative frequency (RCF) distribution method. Furthermore, the geographic distribution of analytical data was characterized and analyzed using the kriging technique, with a correspondence found between major and trace elements in the different geologic domains of the region as well as with the most important mining areas. The results show an influence of the clay fraction present in the soil, which acts as a repository for trace elements. On the basis of the results, of the possible elements related with clay that could be used for normalization, Al was selected as the most suitable, followed by Fe, Mn, and Ti. Reference values estimated using this methodology were lower than those estimated in previous studies.


Subject(s)
Agriculture , Environmental Monitoring/methods , Geologic Sediments/chemistry , Soil Pollutants/analysis , Soil/chemistry , Trace Elements/analysis , Clay/chemistry , Mining , Spain
7.
Environ Res ; 125: 197-208, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23477566

ABSTRACT

Two events during the last decade had major environmental repercussions in Almadén town (Spain). First it was the ceasing of activities in the mercury mine and metallurgical facilities in 2003, and then the finalization of the restoration works on the main waste dump in 2008. The combination of both events brought about a dramatic drop in the emissions of gaseous elemental mercury (GEM) to the atmosphere. Although no one would now call the Almadén area as 'mercury-free', the GEM levels have fallen beneath international reference safety levels for the first time in centuries. This has been a major breakthrough because in less than one decade the site went from GEM levels in the order of "tens of thousands" to mere "tens" nanogram per cubic meter. Although these figures are per se a remarkable achievement, they do not mark the end of the environmental concerns in the Almadén district. Two other sites remain as potential environmental hazards. (1) The Las Cuevas mercury storage complex, a partially restored ex-mining site where liquid mercury is being stored. The MERSADE Project (LIFE-European Union) has tested the Las Cuevas complex as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with high concentrations above 800µgg(-1) Hgsoil and 300ngm(-3) Hggas. However, as predicted by air contamination modeling using the ISC-AERMOD software, GEM concentrations fade away in a short distance following the formation of a NW-SE oriented narrow plume extending for a few hundred meters from the complex perimeter. (2) Far more dangerous from the human health perspective is the Almadenejos area, hosting the small Almadenejos village, the so-called Cerco de Almadenejos (CDA; an old metallurgical precinct), and the mines of La Nueva Concepción, La Vieja Concepción and El Entredicho. The CDA is an old metallurgical site that operated between 1794 and 1861, leaving behind a legacy of extremely contaminated soils (mean concentration=4220µgg(-1) Hg) and GEM emissions that in summer can reach levels up to 4,000-5,000ngm(-3). Thus the CDA remains the sole 'urban' site in the district surpassing GEM international reference safety levels. In order to prevent these emissions, the CDA requires immediate action regarding restoration works. These could involve the full removal of soils or their permanent capping to create an impermeable barrier.


Subject(s)
Air Pollutants/analysis , Air Pollutants/standards , Environmental Monitoring/statistics & numerical data , Environmental Restoration and Remediation/methods , Mercury/analysis , Metallurgy , Mining , Environmental Monitoring/methods , Environmental Restoration and Remediation/statistics & numerical data , Humans , Models, Theoretical , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...