Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Elife ; 122024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466628

ABSTRACT

Secretory proteins are sorted at the trans-Golgi network (TGN) for export into specific transport carriers. However, the molecular players involved in this fundamental process remain largely elusive. Here, we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS - a class of protein kinase D-dependent TGN-to-plasma membrane carriers. We show that TGN46 is necessary for cargo sorting and loading into nascent carriers at the TGN. By combining quantitative fluorescence microscopy and mutagenesis approaches, we further discovered that the lumenal domain of TGN46 encodes for its cargo sorting function. In summary, our results define a cellular function of TGN46 in sorting secretory proteins for export from the TGN.


Subject(s)
Membrane Proteins , trans-Golgi Network , Humans , Membrane Proteins/metabolism , Protein Transport/physiology , trans-Golgi Network/metabolism
2.
Cell Mol Life Sci ; 81(1): 98, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386110

ABSTRACT

In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.


Subject(s)
Neoplasms , Progesterone , Progesterone/pharmacology , Receptors, Progesterone/genetics , Estrogen Receptor alpha , Progestins/pharmacology , Ligands , Cell Membrane
3.
Curr Opin Cell Biol ; 86: 102285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056142

ABSTRACT

The language of biology at the scale of the cell is constituted of alphabets represented by biomolecules. These are stitched together in a variety of ways to create meaning. We argue that the phrases of this language are nanoscale molecular assemblies or nano-hubs for the purpose of information flow. At the cell surface information is sensed and processed via membrane receptors, often configured as multimers. These nano-assemblies serve as receiver nano-hubs, which are flexibly configured with additional nano-hubs that we term modifiers and transducers. This framework serves to process information that is transmitted for execution inside the cell. Here, we explore some examples about how nano-hubs are built and how they may contribute to cellular information flow.


Subject(s)
Cell Membrane
4.
ACS Nano ; 17(9): 8453-8464, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37011057

ABSTRACT

Biosensing applications based on fluorescence detection often require single-molecule sensitivity in the presence of strong background signals. Plasmonic nanoantennas are particularly suitable for these tasks, as they can confine and enhance light in volumes far below the diffraction limit. The recently introduced antenna-in-box (AiB) platforms achieved high single-molecule detection sensitivity at high fluorophore concentrations by placing gold nanoantennas in a gold aperture. However, hybrid AiB platforms with alternative aperture materials such as aluminum promise superior performance by providing better background screening. Here, we report on the fabrication and optical characterization of hybrid AiBs made of gold and aluminum for enhanced single-molecule detection sensitivity. We computationally optimize the optical properties of AiBs by controlling their geometry and materials and find that hybrid nanostructures not only improve signal-to-background ratios but also provide additional excitation intensity and fluorescence enhancements. We further establish a two-step electron beam lithography process to fabricate hybrid material AiB arrays with high reproducibility and experimentally validate the higher excitation and emission enhancements of the hybrid nanostructures as compared to their gold counterpart. We foresee that biosensors based on hybrid AiBs will provide improved sensitivity beyond the capabilities of current nanophotonic sensors for a plethora of biosensing applications ranging from multicolor fluorescence detection to label-free vibrational spectroscopy.

5.
Small ; 19(28): e2207977, 2023 07.
Article in English | MEDLINE | ID: mdl-36999791

ABSTRACT

Recently, the implementation of plasmonic nanoantennas has opened new possibilities to investigate the nanoscale dynamics of individual biomolecules in living cells. However, studies so far have been restricted to single molecular species as the narrow wavelength resonance of gold-based nanostructures precludes the simultaneous interrogation of different fluorescently labeled molecules. Here, broadband aluminum-based nanoantennas carved at the apex of near-field probes are exploited to resolve nanoscale-dynamic molecular interactions on living cell membranes. Through multicolor excitation, the authors simultaneously recorded fluorescence fluctuations of dual-color labeled transmembrane receptors known to form nanoclusters. Fluorescence cross-correlation studies revealed transient interactions between individual receptors in regions of ≈60 nm. Moreover, the high signal-to-background ratio provided by the antenna illumination allowed the authors to directly detect fluorescent bursts arising from the passage of individual receptors underneath the antenna. Remarkably, by reducing the illumination volume below the characteristic receptor nanocluster sizes, the molecular diffusion within nanoclusters is resolved and distinguished from nanocluster diffusion. Spatiotemporal characterization of transient interactions between molecules is crucial to understand how they communicate with each other to regulate cell function. This work demonstrates the potential of broadband photonic antennas to study multi-molecular events and interactions in living cell membranes with unprecedented spatiotemporal resolution.


Subject(s)
Nanostructures , Spectrometry, Fluorescence , Cell Membrane/chemistry , Nanostructures/chemistry , Nanotechnology , Aluminum
6.
Elife ; 122023 03 20.
Article in English | MEDLINE | ID: mdl-36940134

ABSTRACT

The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DCs) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single-particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.


Subject(s)
HIV Infections , HIV-1 , Humans , Dendritic Cells/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , HIV-1/physiology , Actins/metabolism , Liposomes/metabolism , Ligands , Gangliosides/metabolism
7.
Proc Natl Acad Sci U S A ; 119(31): e2200667119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881789

ABSTRACT

Liquid-liquid phase separation (LLPS) is emerging as a key physical principle for biological organization inside living cells, forming condensates that play important regulatory roles. Inside living nuclei, transcription factor (TF) condensates regulate transcriptional initiation and amplify the transcriptional output of expressed genes. However, the biophysical parameters controlling TF condensation are still poorly understood. Here we applied a battery of single-molecule imaging, theory, and simulations to investigate the physical properties of TF condensates of the progesterone receptor (PR) in living cells. Analysis of individual PR trajectories at different ligand concentrations showed marked signatures of a ligand-tunable LLPS process. Using a machine learning architecture, we found that receptor diffusion within condensates follows fractional Brownian motion resulting from viscoelastic interactions with chromatin. Interestingly, condensate growth dynamics at shorter times is dominated by Brownian motion coalescence (BMC), followed by a growth plateau at longer timescales that result in nanoscale condensate sizes. To rationalize these observations, we extended on the BMC model by including the stochastic unbinding of particles within condensates. Our model reproduced the BMC behavior together with finite condensate sizes at the steady state, fully recapitulating our experimental data. Overall, our results are consistent with condensate growth dynamics being regulated by the escaping probability of PR molecules from condensates. The interplay between condensation assembly and molecular escaping maintains an optimum physical condensate size. Such phenomena must have implications for the biophysical regulation of other nuclear condensates and could also operate in multiple biological scenarios.


Subject(s)
Biomolecular Condensates , Cell Nucleus , Receptors, Progesterone , Single Molecule Imaging , Transcription Factors , Biomolecular Condensates/chemistry , Cell Nucleus/chemistry , Chromatin/chemistry , Ligands , Machine Learning , Motion , Receptors, Progesterone/chemistry , Transcription Factors/chemistry
8.
Proc Natl Acad Sci U S A ; 119(21): e2119483119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35588454

ABSTRACT

Chemokine receptor nanoscale organization at the cell membrane is orchestrated by the actin cytoskeleton and influences cell responses. Using single-particle tracking analysis we show that CXCR4R334X, a truncated mutant chemokine receptor linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), fails to nanoclusterize after CXCL12 stimulation, and alters the lateral mobility and spatial organization of CXCR4 when coexpressed. These findings correlate with multiple phalloidin-positive protrusions in cells expressing CXCR4R334X, and their inability to correctly sense chemokine gradients. The underlying mechanisms involve inappropriate actin cytoskeleton remodeling due to the inadequate ß-arrestin1 activation by CXCR4R334X, which disrupts the equilibrium between activated and deactivated cofilin. Overall, we provide insights into the molecular mechanisms governing CXCR4 nanoclustering, signaling and cell function, and highlight the essential scaffold role of ß-arrestin1 to support CXCL12-mediated actin reorganization and receptor clustering. These defects associated with CXCR4R334X expression might contribute to the severe immunological symptoms associated with WHIM syndrome.


Subject(s)
Primary Immunodeficiency Diseases , Receptors, CXCR4 , Warts , Actin Depolymerizing Factors/metabolism , Cell Membrane/metabolism , Cell Movement , Humans , Mutation , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Single Molecule Imaging , Warts/genetics , Warts/metabolism
9.
Biochem Soc Trans ; 49(5): 2357-2369, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34495333

ABSTRACT

Dynamic compartmentalization is a prevailing principle regulating the spatiotemporal organization of the living cell membrane from the nano- up to the mesoscale. This non-arbitrary organization is intricately linked to cell function. On living cell membranes, dynamic domains or 'membrane rafts' enriched with cholesterol, sphingolipids and other certain proteins exist at the nanoscale serving as signaling and sorting platforms. Moreover, it has been postulated that other local organizers of the cell membrane such as intrinsic protein interactions, the extracellular matrix and/or the actin cytoskeleton synergize with rafts to provide spatiotemporal hierarchy to the membrane. Elucidating the intricate coupling of multiple spatial and temporal scales requires the application of correlative techniques, with a particular need for simultaneous nanometer spatial precision and microsecond temporal resolution. Here, we review novel fluorescence-based techniques that readily allow to decode nanoscale membrane dynamics with unprecedented spatiotemporal resolution and single-molecule sensitivity. We particularly focus on correlative approaches from the field of nanophotonics. Notably, we introduce a versatile planar nanoantenna platform combined with fluorescence correlation spectroscopy to study spatiotemporal heterogeneities on living cell membranes at the nano- up to the mesoscale. Finally, we outline remaining future technological challenges and comment on potential directions to advance our understanding of cell membrane dynamics under the influence of the actin cytoskeleton and extracellular matrix in uttermost detail.


Subject(s)
Cell Membrane/metabolism , Nanotechnology , Photons , Microscopy, Fluorescence/methods
10.
Biophys J ; 120(13): 2644-2656, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34087211

ABSTRACT

The leukocyte-specific ß2-integrin LFA-1 and its ligand ICAM-1, expressed on endothelial cells (ECs), are involved in the arrest, adhesion, and transendothelial migration of leukocytes. Although the role of mechanical forces on LFA-1 activation is well established, the impact of forces on its major ligand ICAM-1 has received less attention. Using a parallel-plate flow chamber combined with confocal and super-resolution microscopy, we show that prolonged shear flow induces global translocation of ICAM-1 on ECs upstream of flow direction. Interestingly, shear forces caused actin rearrangements and promoted actin-dependent ICAM-1 nanoclustering before LFA-1 engagement. T cells adhered to mechanically prestimulated ECs or nanoclustered ICAM-1 substrates developed a promigratory phenotype, migrated faster, and exhibited shorter-lived interactions with ECs than when adhered to non mechanically stimulated ECs or to monomeric ICAM-1 substrates. Together, our results indicate that shear forces increase ICAM-1/LFA-1 bonds because of ICAM-1 nanoclustering, strengthening adhesion and allowing cells to exert higher traction forces required for faster migration. Our data also underscore the importance of mechanical forces regulating the nanoscale organization of membrane receptors and their contribution to cell adhesion regulation.


Subject(s)
Endothelial Cells , Intercellular Adhesion Molecule-1 , Cell Adhesion , Cell Movement , Lymphocyte Function-Associated Antigen-1
11.
J Phys Chem Lett ; 12(4): 1175-1181, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33480693

ABSTRACT

Lateral compartmentalization of the plasma membrane is a prominent feature present at multiple spatiotemporal scales that regulates key cellular functions. The extracellular glycocalyx matrix has recently emerged as an important player that modulates the organization of specific receptors and patterns the lipid bilayer itself. However, experimental limitations in investigating its impact on the membrane nanoscale dynamics have hampered detailed studies. Here, we used photonic nanoantenna arrays combined with fluorescence correlation spectroscopy to investigate the influence of hyaluronic acid (HA), a prominent glycosaminoglycan, on the nanoscale organization of mimetic lipid bilayers. Using atomic force microscopy and force spectroscopy, we further correlated our dynamic measurements with the morphology and mechanical properties of bilayers at the nanoscale. Overall, we find that HA has a profound effect on the dynamics, nanoscale organization, and mechanical properties of lipid bilayers that are enriched in sphingolipids and/or cholesterol, such as those present in living cells.


Subject(s)
Hyaluronic Acid/chemistry , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Molecular Dynamics Simulation , Nanotechnology , Spectrometry, Fluorescence
12.
J Cell Biol ; 220(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33156328

ABSTRACT

In response to cholesterol deprivation, SCAP escorts SREBP transcription factors from the endoplasmic reticulum to the Golgi complex for their proteolytic activation, leading to gene expression for cholesterol synthesis and uptake. Here, we show that in cholesterol-fed cells, ER-localized SCAP interacts through Sac1 phosphatidylinositol 4-phosphate (PI4P) phosphatase with a VAP-OSBP complex, which mediates counter-transport of ER cholesterol and Golgi PI4P at ER-Golgi membrane contact sites (MCSs). SCAP knockdown inhibited the turnover of PI4P, perhaps due to a cholesterol transport defect, and altered the subcellular distribution of the VAP-OSBP complex. As in the case of perturbation of lipid transfer complexes at ER-Golgi MCSs, SCAP knockdown inhibited the biogenesis of the trans-Golgi network-derived transport carriers CARTS, which was reversed by expression of wild-type SCAP or a Golgi transport-defective mutant, but not of cholesterol sensing-defective mutants. Altogether, our findings reveal a new role for SCAP under cholesterol-fed conditions in the facilitation of CARTS biogenesis via ER-Golgi MCSs, depending on the ER cholesterol.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , trans-Golgi Network/metabolism , Cholesterol/metabolism , Glycosylphosphatidylinositols/metabolism , HEK293 Cells , HeLa Cells , Humans , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Protein Transport , Sterol Regulatory Element Binding Protein 1/metabolism
13.
Elife ; 92020 11 10.
Article in English | MEDLINE | ID: mdl-33169667

ABSTRACT

The endoplasmic reticulum (ER)-resident protein TANGO1 assembles into a ring around ER exit sites (ERES), and links procollagens in the ER lumen to COPII machinery, tethers, and ER-Golgi intermediate compartment (ERGIC) in the cytoplasm (Raote et al., 2018). Here, we present a theoretical approach to investigate the physical mechanisms of TANGO1 ring assembly and how COPII polymerization, membrane tension, and force facilitate the formation of a transport intermediate for procollagen export. Our results indicate that a TANGO1 ring, by acting as a linactant, stabilizes the open neck of a nascent COPII bud. Elongation of such a bud into a transport intermediate commensurate with bulky procollagens is then facilitated by two complementary mechanisms: (i) by relieving membrane tension, possibly by TANGO1-mediated fusion of retrograde ERGIC membranes and (ii) by force application. Altogether, our theoretical approach identifies key biophysical events in TANGO1-driven procollagen export.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry , Endoplasmic Reticulum/chemistry , Golgi Apparatus/chemistry , Models, Chemical , Protein Conformation , Protein Domains , Vesicular Transport Proteins
14.
Mol Biol Cell ; 31(7): 561-579, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31577524

ABSTRACT

Transmembrane adhesion receptors at the cell surface, such as CD44, are often equipped with modules to interact with the extracellular matrix (ECM) and the intracellular cytoskeletal machinery. CD44 has been recently shown to compartmentalize the membrane into domains by acting as membrane pickets, facilitating the function of signaling receptors. While spatial organization and diffusion studies of membrane proteins are usually conducted separately, here we combine observations of organization and diffusion by using high spatio-temporal resolution imaging on living cells to reveal a hierarchical organization of CD44. CD44 is present in a meso-scale meshwork pattern where it exhibits enhanced confinement and is enriched in nanoclusters of CD44 along its boundaries. This nanoclustering is orchestrated by the underlying cortical actin dynamics. Interaction with actin is mediated by specific segments of the intracellular domain. This influences the organization of the protein at the nano-scale, generating a selective requirement for formin over Arp2/3-based actin-nucleation machinery. The extracellular domain and its interaction with elements of ECM do not influence the meso-scale organization, but may serve to reposition the meshwork with respect to the ECM. Taken together, our results capture the hierarchical nature of CD44 organization at the cell surface, with active cytoskeleton-templated nanoclusters localized to a meso-scale meshwork pattern.


Subject(s)
Actins/metabolism , Cell Membrane/metabolism , Hyaluronan Receptors/metabolism , Nanoparticles/chemistry , Actomyosin/metabolism , Animals , Cell Line , Cytoplasm/metabolism , Diffusion , Formins/metabolism , Humans , Hyaluronan Receptors/chemistry , Models, Biological , Protein Domains , Single Molecule Imaging
15.
Phys Chem Chem Phys ; 21(6): 3114-3121, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30672913

ABSTRACT

Single particle tracking experiments have recently uncovered that the motion of cell membrane components can undergo changes of diffusivity as a result of the heterogeneous environment, producing subdiffusion and nonergodic behavior. In this paper, we show that an autoregressive fractionally integrated moving average (ARFIMA) with noise given by generalized autoregressive conditional heteroscedasticity (GARCH) can describe inhomogeneous diffusion in the cell membrane, where the ARFIMA process models anomalous diffusion and the GARCH process explains a fluctuating diffusion parameter.


Subject(s)
Cell Membrane/metabolism , Models, Biological , Receptors, Cell Surface/metabolism , Diffusion , Normal Distribution , Receptors, Cell Surface/chemistry
16.
Proc Natl Acad Sci U S A ; 115(51): 12991-12996, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30509979

ABSTRACT

Recent advancements in single-molecule-based superresolution microscopy have made it possible to visualize biological structures with unprecedented spatial resolution. Determining the spatial coorganization of these structures within cells under physiological and pathological conditions is an important biological goal. This goal has been stymied by the current limitations of carrying out superresolution microscopy in multiple colors. Here, we develop an approach for simultaneous multicolor superresolution imaging which relies solely on fluorophore excitation, rather than fluorescence emission properties. By modulating the intensity of the excitation lasers at different frequencies, we show that the color channel can be determined based on the fluorophore's response to the modulated excitation. We use this frequency multiplexing to reduce the image acquisition time of multicolor superresolution DNA-PAINT while maintaining all its advantages: minimal color cross-talk, minimal photobleaching, maximal signal throughput, ability to maintain the fluorophore density per imaged color, and ability to use the full camera field of view. We refer to this imaging modality as "frequency multiplexed DNA-PAINT," or fm-DNA-PAINT for short. We also show that frequency multiplexing is fully compatible with STORM superresolution imaging, which we term fm-STORM. Unlike fm-DNA-PAINT, fm-STORM is prone to color cross-talk. To overcome this caveat, we further develop a machine-learning algorithm to correct for color cross-talk with more than 95% accuracy, without the need for prior information about the imaged structure.


Subject(s)
Color , DNA/ultrastructure , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods , Fluorescence , Fluorescent Dyes , Humans
18.
Biophys J ; 115(4): 725-736, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30037496

ABSTRACT

Standard fluorescence microscopy relies on filter-based detection of emitted photons after fluorophore excitation at the appropriate wavelength. Although of enormous utility to the biological community, the implementation of approaches for simultaneous multicolor fluorescence imaging is commonly challenged by the large spectral overlap between different fluorophores. Here, we describe an alternative multicolor fluorescence imaging methodology that exclusively relies on the absorption spectra of the fluorophores instead of their fluorescence emissions. The method is based on multiplexing optical excitation signals in the frequency domain and using single color-blind detection. Because the spectral information is fully encoded during excitation, the method requires minimal spectral filtering on detection. This enables the simultaneous identification of multiple color channels in a single measurement with only one color-blind detector. We demonstrate simultaneous three-color confocal imaging of individual molecules and of four-target imaging on cells with excellent discrimination. Moreover, we have implemented a non-negative matrix factorization algorithm for spectral unmixing to extend the number of color targets that can be discriminated in a single measurement. Using this algorithm, we resolve six spectrally and spatially overlapping fluorophores on fixed cells using four excitation wavelengths. The methodology is fully compatible with live imaging of biological samples and can be easily extended to other imaging modalities, including super-resolution microscopy, making simultaneous multicolor imaging more accessible to the biological research community.


Subject(s)
Microscopy, Fluorescence , Photons , Color , Image Processing, Computer-Assisted
19.
Adv Mater ; : e1801317, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29974518

ABSTRACT

Nanomaterials with very low atomicity deserve consideration as potential pharmacological agents owing to their very small size and to their properties that can be precisely tuned with minor modifications to their size. Here, it is shown that silver clusters of three atoms (Ag3 -AQCs)-developed by an ad hoc method-augment chromatin accessibility. This effect only occurs during DNA replication. Coadministration of Ag3 -AQCs increases the cytotoxic effect of DNA-acting drugs on human lung carcinoma cells. In mice with orthotopic lung tumors, the coadministration of Ag3 -AQCs increases the amount of cisplatin (CDDP) bound to the tumor DNA by fivefold without modifying CDDP levels in normal tissues. As a result, CDDP coadministered with Ag3 -AQCs more strongly reduces the tumor burden. Evidence of the significance of targeting chromatin compaction to increase the therapeutic index of chemotherapy is now provided.

20.
Biophys J ; 114(9): 2044-2051, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742398

ABSTRACT

Time traces obtained from a variety of biophysical experiments contain valuable information on underlying processes occurring at the molecular level. Accurate quantification of these data can help explain the details of the complex dynamics of biological systems. Here, we describe PLANT (Piecewise Linear Approximation of Noisy Trajectories), a segmentation algorithm that allows the reconstruction of time-trace data with constant noise as consecutive straight lines, from which changes of slopes and their respective durations can be extracted. We present a general description of the algorithm and perform extensive simulations to characterize its strengths and limitations, providing a rationale for the performance of the algorithm in the different conditions tested. We further apply the algorithm to experimental data obtained from tracking the centroid position of lymphocytes migrating under the effect of a laminar flow and from single myosin molecules interacting with actin in a dual-trap force-clamp configuration.


Subject(s)
Algorithms , Biophysics/methods , Endothelial Cells/cytology , Image Processing, Computer-Assisted , Lymphocytes/cytology , Microscopy, Atomic Force , Signal-To-Noise Ratio , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...