Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Biomed Pharmacother ; 176: 116814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820974

ABSTRACT

Diabetes and derived complications, especially diabetic nephropathy and neuropathy annually cause great morbimortality worldwide. 5-hydroxytryptamine (5-HT) acts as a modulator of renal sympathetic input and vascular tone. In this line, 5-HT2 receptor blockade has been linked with reduced incidence and progression of diabetic microvascular alterations. In this work, we aimed to determine, in diabetic rats, whether 5-HT2 blockade ameliorates renal function and to characterize the serotonergic modulatory action on renal sympathetic neurotransmission. Diabetes was induced in male Wistar rats by alloxan administration (150 mg/kg, s.c.), and sarpogrelate (30 mg/kg·day, p.o.; 5-HT2 antagonist) was administered for 14 days (DM-S). Normoglycemic and diabetic (DM) animals were maintained as aged-matched controls. At 28th day, DM-S animals were anesthetized and prepared for the in situ autoperfusion of the kidney. Renal vasoconstrictor responses were induced electrically or by i.a. noradrenaline (NA) administration. The role of 5-HT and selective 5-HT agonist/antagonist were studied on these renal vasopressor responses. Sarpogrelate treatment decreased renal sympathetic-induced vasopressor responses, reduced renal hypertrophy and kidney damage markers increased in DM. Intraarterial 5-HT inhibited the sympathetic-induced renal vasoconstrictions, effect reproduced by 5-CT, AS-19, L-694,247 and LY 344864 (5-HT1/5/7, 5-HT7, 5-HT1D and 5-HT1F receptor agonists, respectively). Blocking 5-HT1D/1F/7 receptors completely abolished the 5-CT sympatho-inhibition. NA vasoconstrictions were not altered by any of the 5-HT agonists tested. Thus, in experimental diabetes, chronic sarpogrelate treatment reduces renal damage markers, kidney hypertrophy and renal sympathetic hyperactivity and modifies serotonergic modulation of renal sympathetic neurotransmission, causing a sympatho-inhibition by prejunctional 5-HT1D/1F and 5-HT7 activation.


Subject(s)
Diabetes Mellitus, Experimental , Kidney , Rats, Wistar , Succinates , Sympathetic Nervous System , Animals , Succinates/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Kidney/drug effects , Kidney/innervation , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Rats , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/physiopathology , Vasoconstriction/drug effects
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674892

ABSTRACT

Renal vasculature, which is highly innervated by sympathetic fibers, contributes to cardiovascular homeostasis. This renal sympathetic outflow is inhibited by 5-HT in normoglycaemic rats. Considering that diabetes induces cardiovascular complications, we aimed to determine whether diabetic state modifies noradrenergic input at renal level and its serotonergic modulation in rats. Alloxan diabetic rats were anaesthetized (pentobarbital; 60 mg/kg i.p.) and prepared for in situ autoperfusion of the left kidney to continuously measure systemic blood pressure (SBP), heart rate (HR), and renal perfusion pressure (RPP). Electrical stimulation of renal sympathetic outflow induces frequency-dependent increases (Δ) in RPP (23.9 ± 2.1, 59.5 ± 1.9, and 80.5 ± 3.5 mm Hg at 2, 4, and 6 Hz, respectively), which were higher than in normoglycaemic rats, without modifying HR or SBP. Intraarterial bolus of 5-HT and 5-CT (5-HT1/5/7 agonist) reduced electrically induced ΔRPP. Only L-694,247 (5-HT1D agonist) reproduced 5-CT inhibition on sympathetic-induced vasoconstrictions, whereas it did not modify exogenous noradrenaline-induced ΔRPP. 5-CT inhibition was exclusively abolished by i.v. bolus of LY310762 (5-HT1D antagonist). An inhibitor of guanylyl cyclase, ODQ (i.v.), completely reversed the L-694,247 inhibitory effect. In conclusion, diabetes induces an enhancement in sympathetic-induced vasopressor responses at the renal level. Prejunctional 5-HT1D receptors, via the nitric oxide pathway, inhibit noradrenergic-induced vasoconstrictions in diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Serotonin , Rats , Animals , Serotonin/metabolism , Rats, Wistar , Receptor, Serotonin, 5-HT1D/metabolism , Diabetes Mellitus, Experimental/metabolism , Kidney , Norepinephrine/pharmacology , Norepinephrine/metabolism , Sympathetic Nervous System/metabolism , Electric Stimulation , Blood Pressure
3.
Biomed Pharmacother ; 153: 113276, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35717784

ABSTRACT

This study aimed to investigate whether the 5-HT2 receptor blockade alters the 5-HT effect on vascular sympathetic neurotransmission and platelet activation in type 1 diabetes. 28-day diabetes was obtained by alloxan (150 mg/kg; s.c.) in male Wistar rats, administering sarpogrelate (5-HT2 blocker; 30 mg/kg/day; p.o.) for 14 days. Blood glucose and body weight were monitored for 28 days. After 4 weeks of diabetes induction, food and drink intake, urine, plasma-platelet 5-HT, and platelet activation were determined in normoglycemic, non-treated diabetic and sarpogrelate-treated diabetic rats. Another set of diabetic rats were pithed to run the vascular sympathetic stimulation or exogenous noradrenaline administration, examining the induced vasoconstrictor responses. Sarpogrelate treatment significantly reduced drink intake and urine, whereas BW gain, hyperglycemia, and food intake were not modified in diabetic rats. The platelet activation and plasma 5-HT concentration were decreased (increasing the stored 5-HT platelet) by 5-HT2 blockade in diabetic animals. The sympathetic-induced vasoconstrictions were higher in non-treated than in sarpogrelate-treated diabetic rats. 5-HT inhibited these vasopressor responses, reproduced exclusively by the 5-HT1/5/7 receptor agonist, 5-CT. The 5-CT-produced inhibition was partly reversed by 5-HT1D or 5-HT7 antagonists (LY310762 or SB-258719, respectively), and totally annulled by the mixture of LY310762+SB-258719. Noradrenaline-caused vasoconstrictions were also decreased by 5-CT. In conclusion, our results reveal that 14-day sarpogrelate treatment improves polydipsia and polyuria, reduces platelet hyperactivation, plasma 5-HT and the vascular sympathetic tone, and changes 5-HT receptors inhibiting noradrenergic drive in diabetic rats: pre and/or postjunctional 5-HT1D/7 are involved in the sympatho-inhibition.


Subject(s)
Diabetes Mellitus, Experimental , Serotonin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Norepinephrine/pharmacology , Rats , Rats, Wistar , Serotonin/pharmacology , Succinates , Sympathetic Nervous System , Vasoconstrictor Agents/pharmacology
4.
Int J Mol Sci ; 23(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628547

ABSTRACT

Comorbid diabetes and depression constitutes a major health problem, worsening associated cardiovascular diseases. Fluoxetine's (antidepressant) role on cardiac diabetic complications remains unknown. We determined whether fluoxetine modifies cardiac vagal input and its serotonergic modulation in male Wistar diabetic rats. Diabetes was induced by alloxan and maintained for 28 days. Fluoxetine was administered the last 14 days (10 mg/kg/day; p.o). Bradycardia was obtained by vagal stimulation (3, 6 and 9 Hz) or i.v. acetylcholine administrations (1, 5 and 10 µg/kg). Fluoxetine treatment diminished vagally-induced bradycardia. Administration of 5-HT originated a dual action on the bradycardia, augmenting it at low doses and diminishing it at high doses, reproduced by 5-CT (5-HT1/7 agonist). 5-CT did not alter the bradycardia induced by exogenous acetylcholine. Decrease of the vagally-induced bradycardia evoked by high doses of 5-HT and 5-CT was reproduced by L-694,247 (5-HT1D agonist) and blocked by prior administration of LY310762 (5-HT1D antagonist). Enhancement of the electrical-induced bradycardia by 5-CT (10 µg/kg) was abolished by pretreatment with SB269970 (5-HT7 receptor antagonist). Thus, oral fluoxetine treatment originates a decrease in cardiac cholinergic activity and changes 5-HT modulation of bradycardic responses in diabetes: prejunctional 5-HT7 receptors augment cholinergic-evoked bradycardic responses, whereas prejunctional 5-HT1D receptors inhibit vagally-induced bradycardia.


Subject(s)
Diabetes Mellitus, Experimental , Fluoxetine , Acetylcholine/pharmacology , Animals , Bradycardia/drug therapy , Bradycardia/etiology , Cholinergic Agents , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Male , Rats , Rats, Wistar , Receptors, Serotonin/physiology , Serotonin/pharmacology , Serotonin Antagonists/pharmacology
5.
Life Sci ; 293: 120335, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35051421

ABSTRACT

AIMS: This study investigated whether fluoxetine treatment changes the 5-HT regulation on vascular sympathetic neurotransmission in type 1 diabetes. MAIN METHODS: Four-week diabetes was obtained by a single alloxan s.c. administration in male Wistar rats, administering fluoxetine for 14 days (10 mg/kg/day; p.o.). Systolic blood pressure, heart rate, glycaemia, body weight (BW) evolution, creatinine, and blood urea nitrogen (BUN) were monitored. Afterward, rats were pithed to perform the vascular sympathetic stimulation. 5-HT1A/1D/2A receptors expression was analysed by Western blot in thoracic aorta. Both i.v. norepinephrine and the electrical stimulation of the spinal sympathetic drive evoked vasoconstrictor responses. KEY FINDINGS: Fluoxetine treatment significantly reduced the BW gain, hyperglycaemia, creatinine, and BUN in diabetic rats. The electrical-produced vasopressor responses were greater in untreated than in fluoxetine-treated diabetic rats. 5-HT decreased the sympathetic-produced vasopressor responses. While 5-CT, 8-OH-DPAT and L-694,247 (5-HT1/7, 5-HT1A and 5-HT1D agonists, respectively) reproduced 5-HT-evoked inhibition, the 5-HT2 activation by α-methyl-5-HT augmented the vasoconstrictions. The 5-CT sympatho-inhibition was reversed by 5-HT1A plus 5-HT1D antagonists (WAY-100,635 and LY310762, respectively), whereas ritanserin (5-HT2A antagonist) blocked the α-methyl-5-HT potentiating effect. Norepinephrine-generated vasoconstrictions were increased or diminished by α-methyl-5-HT or 5-CT, respectively. 5-HT1A/1D/2A receptors were expressed at vascular level, being 5-HT1A expression increased by fluoxetine in diabetic rats. SIGNIFICANCE: Our findings suggest that fluoxetine improves metabolic and renal profiles, changes the vasopressor responses, and 5-HT receptors modulating sympathetic activity in diabetic rats: 5-HT1A/1D are involved in the sympatho-inhibition, while 5-HT2A is implicated in the sympatho-potentiation, being both effects pre and/or postjunctional in nature.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Fluoxetine/administration & dosage , Receptors, Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/administration & dosage , Serotonin/metabolism , Administration, Oral , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Male , Rats , Rats, Wistar , Serotonin Antagonists/pharmacology
6.
J Pharmacol Sci ; 147(1): 48-57, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34294372

ABSTRACT

Given the interconnection between depressive and cardiovascular disorders, we investigated whether antidepressant treatment (fluoxetine) modifies the serotonergic influence on rat vascular noradrenergic outflow. Twelve-week-old male Wistar rats received fluoxetine treatment (10 mg/kg/day; p.o.) for 14 days; then, they were pithed and prepared for sympathetic stimulation. Vasopressor responses were obtained by electrical stimulation of the sympathetic outflow (0.1, 0.5, 1, and 5 Hz) or i.v. noradrenaline (NA; 0.01, 0.05, 0.1, and 0.5 µg/kg). In fluoxetine-treated group, the electrical-induced vasoconstrictions were lower compared to non-treated rats. Intravenous infusion of 5-HT (10 µg/kg/min) inhibited the sympathetically-induced vasoconstrictions. Only 5-CT, 8-OH-DPAT and L-694,247 (5-HT1/7, 5-HT1A and 5-HT1D agonists, respectively) mimicked 5-HT-induced inhibition, while α-methyl-5-HT (5-HT2 agonist) increased the vasopressor responses. The inhibitory effect of 5-HT was: a) no modified by SB269970 (5-HT7 antagonist); b) abolished by WAY-100,635 (5-HT1A antagonist) plus LY310762 (5-HT1D antagonist); and c) potentiated by ritanserin (5-HT2A receptor antagonist). The vasoconstrictions induced by exogenous NA were not modified by 5-CT but were increased by α-methyl-5-HT. Our results suggest that fluoxetine treatment decreases NA release at vascular level and changes 5-HT modulation on rat vascular noradrenergic neurotransmission, inducing sympatho-inhibition via prejunctional 5-HT1A/1D receptors, and sympatho-potentiation via pre and/or postjunctional 5-HT2A receptors.


Subject(s)
Antidepressive Agents/pharmacology , Fluoxetine/pharmacology , Norepinephrine/metabolism , Sympathetic Nervous System/drug effects , Synaptic Transmission/drug effects , Animals , Blood Vessels/innervation , Blood Vessels/metabolism , Electric Stimulation , Male , Rats, Wistar , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/pharmacology , Vasoconstriction/drug effects
7.
Sci Rep ; 10(1): 19358, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168874

ABSTRACT

5-HT inhibits cardiac sympathetic neurotransmission in normoglycaemic rats, via 5-HT1B, 5-HT1D and 5-HT5A receptor activation. Since type 1 diabetes impairs the cardiac sympathetic innervation leading to cardiopathies, this study aimed to investigate whether the serotonergic influence on cardiac noradrenergic control is altered in type 1 diabetic rats. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/kg, i.p.). Four weeks later, the rats were anaesthetized, pithed and prepared for producing tachycardic responses by electrical preganglionic stimulation (C7-T1) of the cardioaccelerator sympathetic outflow or i.v. noradrenaline bolus injections. Immunohistochemistry was performed to study 5-HT1B, 5-HT1D and 5-HT5A receptor expression in the stellate ganglion from normoglycaemic and diabetic rats. In the diabetic group, i) i.v. continuous infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT1/5A agonist 5-carboxamidotryptamine (without modifying noradrenaline-induced tachycardia), but not by the agonists indorenate (5-HT1A), CP 93,129 (5-HT1B), PNU 142633 (5-HT1D), or LY344864 (5-HT1F); ii) SB 699551 (5-HT5A antagonist; i.v.) completely reversed 5-CT-induced cardiac sympatho-inhibition; and iii) 5-HT5A receptors were more expressed in the stellate ganglion compared to normoglycaemic rats. These results show the prominent role of the peripheral 5-HT5A receptors prejunctionally inhibiting the cardiac sympathetic drive in type 1 diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Receptors, Serotonin/physiology , Sympathetic Nervous System/physiology , 5-Methoxytryptamine/analogs & derivatives , 5-Methoxytryptamine/pharmacology , Animals , Biphenyl Compounds/pharmacology , Carbazoles/pharmacology , Chromans/pharmacology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , Electric Stimulation Therapy , Fluorobenzenes/pharmacology , Immunohistochemistry , Male , Norepinephrine/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1B/physiology , Receptor, Serotonin, 5-HT1D/physiology , Serotonin/analogs & derivatives , Serotonin/chemistry , Serotonin/metabolism
8.
Pflugers Arch ; 472(12): 1693-1703, 2020 12.
Article in English | MEDLINE | ID: mdl-32820344

ABSTRACT

The dopaminergic system influences the heart rhythm by inhibiting the rat cardiac sympathetic and parasympathetic neurotransmissions through activation of D2-like receptors (encompassing the D2, D3, and D4 subtypes). Whereas D2 receptor subtype activation results in cardiac sympatho-inhibition, the dopamine receptor subtypes involved in rat cardiac vago-inhibition remain unknown. Hence, this study investigated the specific functional role of the D2-like receptor subtypes (D2, D3, and/or D4) inhibiting the rat heart cholinergic drive. For this purpose, male Wistar rats were pithed and prepared for cardiac vagal stimulation. Bradycardic responses were obtained by electrical stimulation of vagal fibres (3, 6, 9 Hz; n = 100) or i.v. acetylcholine (ACh; 1, 5, 10 µg/kg; n = 15). Expression of D2, D3, and D4 receptors was studied in left and right atrium samples by PCR (n = 4). Intravenous injections of quinpirole (D2-like agonist; 1-30 µg/kg), but not of SFK-38393 (D1-like agonist; 1-30 µg/kg), dose-dependently inhibited the vagally induced bradycardia. The vago-inhibition induced by quinpirole (which failed to affect the bradycardia to i.v. ACh) was unchanged after i.v. injections of the antagonists L-741,626 (D2; 100 µg/kg) or SB-277011-A (D3; 100 µg/kg), but it was abolished by L-745,870 (D4; 100 µg/kg). mRNA levels of D2, D3, and D4 receptor subtype were detected in the left and right rat atria. Our results suggest that the quinpirole-induced vagolytic effect involves prejunctional D4 receptor subtypes, located in the left and right atria. This provides new evidence on the relevance of D4 receptor modulating the heart parasympathetic control.


Subject(s)
Heart Rate , Heart/physiology , Receptors, Dopamine D4/metabolism , Vagus Nerve/physiology , Animals , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Heart/innervation , Heart Atria/metabolism , Male , Quinpirole/pharmacology , Rats , Rats, Wistar , Receptors, Dopamine D4/agonists , Receptors, Dopamine D4/antagonists & inhibitors , Receptors, Dopamine D4/genetics , Vagus Nerve/drug effects , Vagus Nerve Stimulation
9.
Hypertens Res ; 42(5): 618-627, 2019 05.
Article in English | MEDLINE | ID: mdl-30696976

ABSTRACT

Sympathetic overdrive is a key player in hypertension, where the mesenteric vasculature plays a relevant role in modulating blood pressure. Although 5-HT inhibits noradrenergic mesenteric neurotransmission in normotensive rats, its effect on the mesenteric sympathetic drive in hypertensive rats has not been studied. We investigated the influence of in vivo 5-HT by characterizing the implicated serotonergic receptors on the mesenteric sympathetic outflow in rats with N-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Hypertension was induced in male Wistar rats by L-NAME administration (30 mg/kg per day; 21 days) in drinking water. The rats were anesthetized (sodium pentobarbital; 60 mg/kg, i.p.), prepared for the in situ autoperfused rat mesentery, and subjected for monitoring their systemic blood pressure (SBP), heart rate (HR), and mesenteric perfusion pressure (MPP). Electrical stimulation of mesenteric sympathetic nerves resulted in frequency-dependent increases in MPP without altering SBP or HR. The 5-HT and cisapride (5-HT4 agonist) i.a. bolus (1-25 µg/kg) inhibited vasopressor responses by electrical stimulation of the mesenteric nerves, unlike an i.a. bolus (25 µg/kg each) of the agonist 5-carboxamidotryptamine (5-HT1/7 agonist), α-methyl-5-HT (5-HT2), or 1-PBG (5-HT3). However, i.a. cisapride (25 µg/kg) did not affect the noradrenaline-induced vasoconstriction in the mesenteric vasculature. Administration of the selective 5-HT4 receptor antagonist GR 125487 (1 mg/kg, i.v.) completely abolished cisapride- and 5-HT-evoked mesenteric sympatholytic effects. Additionally, ELISA analysis demonstrated higher 5-HT4 receptor expression in mesenteric arteries from L-NAME-hypertensive compared with normotensive rats. Our findings suggest that L-NAME-induced hypertension modifies the 5-HT modulation of the rat mesenteric sympathetic drive: prejunctional 5-HT4 receptors are involved in the serotonergic sympathoinhibitory effect.


Subject(s)
Hypertension/metabolism , Mesenteric Arteries/metabolism , Receptors, Serotonin, 5-HT4/metabolism , Splanchnic Circulation , Sympathetic Nervous System/metabolism , Animals , Cisapride , Disease Models, Animal , Indoles , Male , NG-Nitroarginine Methyl Ester , Rats, Wistar , Sulfonamides , Synaptic Transmission , Vasoconstriction
10.
Can J Physiol Pharmacol ; 97(2): 90-98, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30462556

ABSTRACT

Although depression and cardiovascular diseases are related, the role of antidepressants such as fluoxetine (increasing serotonin levels) within cardiac regulation remains unclear. We aimed to determine whether fluoxetine modifies the pharmacological profile of serotonergic influence on vagal cardiac outflow. Rats were treated with fluoxetine (10 mg/kg per day; p.o.) for 14 days or equivalent volumes of drinking water (control group); then, they were pithed and prepared for vagal stimulation. Bradycardic responses were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or i.v. acetylcholine (ACh; 1, 5, and 10 µg/kg). The i.v. administration of 5-hydroxytryptamine (5-HT; 10 and 50 µg/kg) inhibited the vagally induced bradycardia. 5-CT (5-HT1/7 agonist) and L-694,247 (5-HT1D agonist) mimicked the serotonin inhibitory effect while α-methyl-5-HT (5-HT2 agonist) was devoid of any action. SB269970 (5-HT7 antagonist) did not abolish 5-CT inhibitory action on the electrically induced bradycardia. Pretreatment with LY310762 (5-HT1D antagonist) blocked the effects induced by L-694,247 and 5-CT. 5-HT and 5-CT failed to modify the bradycardia induced by exogenous ACh. Our outcomes suggest that fluoxetine treatment modifies 5-HT modulation on heart parasympathetic neurotransmission in rats, evoking inhibition of the bradycardia via prejunctional 5-HT1D in pithed rats.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Bradycardia/drug therapy , Fluoxetine/pharmacology , Receptor, Serotonin, 5-HT1D/metabolism , Vagus Nerve/drug effects , Administration, Oral , Animals , Antidepressive Agents, Second-Generation/therapeutic use , Bradycardia/etiology , Depression/complications , Depression/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Fluoxetine/therapeutic use , Heart/innervation , Heart Rate/drug effects , Humans , Oxadiazoles/pharmacology , Phenols/pharmacology , Rats , Rats, Wistar , Serotonin/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin Receptor Agonists/metabolism , Sulfonamides/pharmacology , Tryptamines/pharmacology , Vagus Nerve/metabolism
11.
Can J Physiol Pharmacol ; 96(4): 328-336, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28886249

ABSTRACT

Serotonin (5-hydroxytryptamine; 5-HT) inhibits the rat cardioaccelerator sympathetic outflow by 5-HT1B/1D/5 receptors. Because chronic blockade of sympatho-excitatory 5-HT2 receptors is beneficial in several cardiovascular pathologies, this study investigated whether sarpogrelate (a 5-HT2 receptor antagonist) alters the pharmacological profile of the above sympatho-inhibition. Rats were pretreated for 2 weeks with sarpogrelate in drinking water (30 mg/kg per day; sarpogrelate-treated group) or equivalent volumes of drinking water (control group). Animals were pithed and prepared for spinal stimulation (C7-T1) of the cardioaccelerator sympathetic outflow or for intravenous (i.v.) bolus injections of noradrenaline. Both procedures produced tachycardic responses remaining unaltered after saline. Continuous i.v. infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT receptor agonists 5-carboxamidotryptamine (5-CT; 5-HT1/5A), CP 93,129 (5-HT1B), or PNU 142633 (5-HT1D), but not by indorenate (5-HT1A) in both groups; whereas LY344864 (5-HT1F) mimicked 5-HT only in sarpogrelate-treated rats. In sarpogrelate-treated animals, i.v. GR 127935 (310 µg/kg; 5-HT1B/1D/1F receptor antagonist) attenuated 5-CT-induced sympatho-inhibition and abolished LY344864-induced sympatho-inhibition; while GR 127935 plus SB 699551 (1 mg/kg; 5-HT5A receptor antagonist) abolished 5-CT-induced inhibition. These results confirm the cardiac sympatho-inhibitory role of 5-HT1B, 5-HT1D, and 5-HT5A receptors in both groups; nevertheless, sarpogrelate treatment specifically unmasked a cardiac sympatho-inhibition mediated by 5-HT1F receptors.


Subject(s)
Myocardium/metabolism , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology , Sympathetic Nervous System/metabolism , Animals , Blood Pressure/drug effects , Carbazoles/pharmacology , Diastole/drug effects , Electric Stimulation , Fluorobenzenes/pharmacology , Heart Rate/drug effects , Hemodynamics/drug effects , Male , Norepinephrine/pharmacology , Oxadiazoles/pharmacology , Piperazines/pharmacology , Rats, Wistar , Serotonin/analogs & derivatives , Serotonin/pharmacology , Serotonin Receptor Agonists/pharmacology , Serotonin Receptor Agonists/therapeutic use , Sodium Chloride/pharmacology , Succinates/pharmacology , Succinates/therapeutic use , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Tachycardia/drug therapy , Tachycardia/physiopathology , Receptor, Serotonin, 5-HT1F
12.
Clin Exp Pharmacol Physiol ; 44(12): 1224-1231, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28771848

ABSTRACT

5-hydroxytryptamine (5-HT) modulates noradrenergic activity in different cardiovascular territories, but its effect on the mesenteric vasopressor outflow has not yet been clarified. This study investigated the in vivo serotonergic influence, characterizing 5-HT receptors implicated, in sympathetic innervation of mesenteric vasculature. Wistar rats were anaesthetised and prepared for the in situ autoperfused rat mesentery, monitoring systemic blood pressure (SBP), heart rate (HR) and mesenteric perfusion pressure (MPP). Electrical stimulation of mesenteric sympathetic nerves resulted in frequency-dependent increases in MPP (9 ± 1.6, 25.7 ± 3.9 and 60.2 ± 5 mmHg for 2, 4 and 8 Hz, respectively), without altering SBP or HR. 5-HT (1-25 µg/kg), 5-carboxamidotryptamine (5-HT1/7 agonist; 25 µg/kg) or L-694,247 (5-HT1D agonist; 1-25 µg/kg) i.a. bolus inhibited vasopressor responses by mesenteric nerves electrical stimulation, unlike i.a. bolus of agonists 8-OH-DPAT (5-HT1A ), CGS-12066B (5-HT1B ), BRL 54443 (5-HT1e/1F ), α-methyl-5-HT (5-HT2 ), 1-PBG (5-HT3 ), cisapride (5-HT4 ) or AS-19 (5-HT7 ) (25 µg/kg each). Interestingly, i.a. L-694,247 (25 µg/kg) also reduced the exogenous norepinephrine-induced vasoconstrictions. Pretreatment with selective 5-HT1D receptor antagonist, LY310762 (1 mg/kg, i.v.), completely abolished L-694,247- and 5-HT-induced mesenteric sympathoinhibition. Furthermore, ELISA analysis confirmed 5-HT1D receptors expression in mesenteric artery. These findings suggest that serotonergic mechanisms-induced sympathoinhibition of mesenteric noradrenergic outflow is mediated by pre and/or postjunctional 5-HT1D receptors.


Subject(s)
Mesenteric Arteries/drug effects , Mesentery/drug effects , Receptor, Serotonin, 5-HT1D/metabolism , Serotonin/pharmacology , Splanchnic Circulation/drug effects , Sympathetic Nervous System/drug effects , Animals , Electric Stimulation , In Vitro Techniques , Male , Mesenteric Arteries/innervation , Mesenteric Arteries/metabolism , Mesentery/blood supply , Mesentery/metabolism , Oxadiazoles/pharmacology , Rats, Wistar , Tryptamines/pharmacology , Vasoconstrictor Agents/pharmacology
13.
J Cardiovasc Pharmacol ; 69(1): 13-22, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27676327

ABSTRACT

5-Hydroxytryptamine (5-HT) modulates the cardiac parasympathetic neurotransmission, inhibiting the bradyarrhythmia by 5-HT2 receptor activation. We aimed to determine whether the chronic selective 5-HT2 blockade (sarpogrelate) could modify the serotonergic modulation on vagal cardiac outflow in pithed rat. Bradycardic responses in rats treated with sarpogrelate (30 mg·kg·d; orally) were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or intravenous (IV) injections of acetylcholine (1, 5, and 10 µg/kg). 5-HT7 receptor expression was quantified by Western blot in vagus nerve and right atrium. The IV administration of 5-HT (10-200 µg/kg) dose dependently decreased the vagally induced bradycardia, and agonists 5-CT (5-HT1/7), 8-OH-DPAT (5-HT1A), or AS-19 (5-HT7) (50 µg/kg each) mimicked the 5-HT-induced inhibitory effect. Neither agonists CGS-12066B (5-HT1B), L-694,247 (5-HT1D), nor 1-phenylbiguanide (5-HT3) modified the electrically-induced bradycardic responses. Moreover, SB-258719 (5-HT7 antagonist) abolished the 5-HT-, 5-CT-, 8-OH-DPAT-, and AS-19-induced bradycardia inhibition; 5-HT or AS-19 did not modify the bradycardia induced by IV acetylcholine; and 5-HT7 receptor was expressed in both the vagus nerve and the right atrium. Our outcomes suggest that blocking chronically 5-HT2 receptors modifies the serotonergic influence on cardiac vagal neurotransmission exhibiting 5-HT as an exclusively inhibitory agent via prejunctional 5-HT7 receptor.


Subject(s)
Bradycardia/physiopathology , Receptors, Serotonin/physiology , Serotonin Antagonists/administration & dosage , Succinates/administration & dosage , Vagus Nerve/physiology , Animals , Bradycardia/etiology , Dose-Response Relationship, Drug , Drug Administration Schedule , Heart Rate/drug effects , Heart Rate/physiology , Male , Rats , Rats, Wistar , Treatment Outcome , Vagus Nerve/drug effects , Vagus Nerve Stimulation/adverse effects
14.
Sci Rep ; 6: 33979, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27659784

ABSTRACT

This study aimed to determine whether the serotonergic modulation, through selective 5-HT2 receptor blockade, restores cardiovascular disturbances in type 1 diabetic rats. Diabetes was induced by alloxan (150 mg/kg, s.c.) and maintained for 4 weeks. 5-HT2 receptor was blocked by sarpogrelate (30 mg/kg.day; 14 days; p.o.). Systolic blood pressure (SBP), heart rate (HR), glycaemia and body weight (BW) were monitored periodically. Animals were sacrificed at the end of the study and the heart, right kidney and thoracic aorta were removed; plasma samples were also obtained. Left ventricular hypertrophy index (LVH) and renal hypertrophy index (RH) were determined. Vascular function was studied in aorta rings; additionally, superoxide anion (O2•-) production (by lucigenin-enhanced chemiluminescence) and lipid peroxidation (by thiobarbituric acid reactive substances assay) were measured. Neither alloxan nor sarpogrelate treatments altered HR, LVH or endothelium-independent relaxation. SBP, glycaemia, BW, RH, O2•- production and lipid peroxidation were significantly altered in diabetic animals compared with controls. Sarpogrelate treatment considerably decreased SBP, RH, O2•- production and lipid peroxidation. Endothelium-dependent relaxation was severely reduced in diabetic animal aortas compared to controls; sarpogrelate treatment markedly improved it. Our outcomes show that selectively blocking 5-HT2 receptors has beneficial effects on impaired cardiovascular parameters in diabetes.

15.
Basic Clin Pharmacol Toxicol ; 118(2): 113-21, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26301462

ABSTRACT

In vivo stimulation of cardiac vagal neurons induces bradycardia by acetylcholine (ACh) release. As vagal release of ACh may be modulated by autoreceptors (muscarinic M2 ) and heteroreceptors (including serotonin 5-HT1 ), this study has analysed the pharmacological profile of the receptors involved in histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats. For this purpose, 180 male Wistar rats were pithed, artificially ventilated and pre-treated (i.v.) with 1 mg/kg atenolol, followed by i.v. administration of physiological saline (1 ml/kg), histamine (10, 50, 100 and 200 µg/kg) or the selective histamine H1 (2-pyridylethylamine), H2 (dimaprit), H3 (methimepip) and H4 (VUF 8430) receptor agonists (1, 10, 50 and 100 µg/kg each). Under these conditions, electrical stimulation (3, 6 and 9 Hz; 15 ± 3 V and 1 ms) of the vagus nerve resulted in frequency-dependent bradycardic responses, which were (i) unchanged during the infusions of saline, 2-pyridylethylamine, dimaprit or VUF 8430; and (ii) dose-dependently inhibited by histamine or methimepip. Moreover, the inhibition of the bradycardia caused by 50 µg/kg of either histamine or methimepip (which failed to inhibit the bradycardic responses to i.v. bolus injections of acetylcholine; 1-10 µg/kg) was abolished by the H3 receptor antagonist JNJ 10181457 (1 mg/kg, i.v.). In conclusion, our results suggest that histamine-induced inhibition of the vagal bradycardic out-flow in pithed rats is mainly mediated by pre-junctional activation of histamine H3 receptors, as previously demonstrated for the vasopressor sympathetic out-flow and the vasodepressor sensory CGRPergic (calcitonin gene-related peptide) out-flow.


Subject(s)
Bradycardia/metabolism , Heart Rate/drug effects , Histamine Agonists/pharmacology , Histamine H3 Antagonists/pharmacology , Receptors, Histamine H3/metabolism , Animals , Histamine/metabolism , Imidazoles/pharmacology , Male , Piperidines/pharmacology , Pyridines/pharmacology , Rats , Rats, Wistar , Vagus Nerve/drug effects , Vagus Nerve/physiology
16.
Vascul Pharmacol ; 72: 172-80, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26003124

ABSTRACT

Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1µg/kg each) or l-694,247 (5-HT1D agonist; 0.0125µg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125µg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release.


Subject(s)
Kidney/drug effects , Nitric Oxide/metabolism , Receptor, Serotonin, 5-HT1D/metabolism , Receptors, Serotonin/metabolism , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Sympathetic Nervous System/drug effects , Synaptic Transmission/drug effects , Animals , Blood Pressure/drug effects , Heart Rate/drug effects , Kidney/metabolism , Male , NG-Nitroarginine Methyl Ester/pharmacology , Norepinephrine/pharmacology , Oxadiazoles/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Serotonin/analogs & derivatives , Serotonin/pharmacology , Sympathetic Nervous System/metabolism , Tryptamines/pharmacology
17.
Clin Exp Pharmacol Physiol ; 42(6): 640-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25854421

ABSTRACT

5-HT is a powerful vasoconstrictor substance in renal vasculature (mainly by 5-HT2 activation). Nevertheless, 5-HT is notable for its dual cardiovascular effects, producing both vasodilator and vasoconstrictor actions. This study aimed to investigate whether, behind the predominant serotonergic vasoconstrictor action, THE 5-HT system may exert renal vasodilator actions, and, if so, characterize the 5-HT receptors and possible indirect pathways. Renal perfusion pressure (PP), systemic blood pressure (SBP) and heart rate (HR) measurement in in situ autoperfused rat kidney was determined in phenylephrine infused rats. Intra arterial (i.a.) bolus administration of 5-HT (0.00000125-0.1 µg/kg) decreased renal PP in the presence of a phenylephrine continuous infusion (phenylephrine-infusion group), without modifying SBP or HR. These vasodilator responses were potentiated by 5-HT2 antagonism (ritanserin, 1 mg/kg i.v.), whereas the responses were abolished by 5-HT1 /7 antagonist (methiothepin, 100 µg/kg i.v.) or 5-HT1D antagonist (LY310762, 1 mg/kg i.v.). The i.a. administration (0.00000125 to 0.1 µg/kg) of 5-CT or L-694,247 (5-HT1D agonist) mimicked 5-HT vasodilator effect, while other agonists (1-PBG, α-methyl-5-HT, AS-19 (5-HT7), 8-OH-DPAT (5-HT1A) or CGS-12066B (5-HT1B)) did not alter baseline haemodynamic variables. L-694,247 vasodilation was abolished by i.v. bolus of antagonists LY310762 (5-HT1D, 1 mg/kg) or L-NAME (nitric oxide, 10 mg/kg), but not by i.v. bolus of indomethacin (cyclooxygenase, 2 mg/kg) or glibenclamide (ATP-dependent K(+) channel, 20 mg/kg). These outcomes suggest that 5-HT1D activation produces a vasodilator effect in the in situ autoperfused kidney of phenylephrine-infusion rats mediated by the NO pathway.


Subject(s)
Kidney/physiology , Nitric Oxide/physiology , Receptor, Serotonin, 5-HT1D/metabolism , Serotonin Receptor Agonists/pharmacology , Vasodilation/physiology , Animals , Dose-Response Relationship, Drug , Kidney/blood supply , Kidney/drug effects , Male , Phenylephrine/pharmacology , Rats , Rats, Wistar , Serotonin Antagonists/pharmacology , Vasodilation/drug effects
18.
Vascul Pharmacol ; 63(1): 4-12, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25179247

ABSTRACT

The role of calcitonin gene-related peptide (CGRP) in the modulation of vascular tone has been widely documented. Indeed, electrical stimulation of the perivascular sensory outflow in pithed rats induces vasodepressor responses by activation of CGRP receptors. This study investigated the role of 5-HT7 receptors in the inhibition of the rat vasodepressor sensory outflow. Male Wistar pithed rats were pretreated with i.v. continuous infusions of hexamethonium and methoxamine, followed by physiological saline or AS-19 (a 5-HT7 receptor agonist). Then, electrical stimulation of the spinal cord resulted in frequency-dependent decreases in DBP. The infusions of AS-19, as compared to those of saline, inhibited the vasodepressor responses induced by electrical stimulation without affecting those to i.v. bolus injections of exogenous α-CGRP. This inhibition by AS-19 was abolished by the antagonists pimozide (5-HT7) or sulfisoxazole (ETA), but not by indomethacin (COX1/2) or losartan (AT1), at doses that did not affect per se the electrically-induced vasodepressor responses. Interestingly, glibenclamide (an ATP-dependent K(+) channel blocker) attenuated these vasodepressor responses. The present results suggest that AS-19-induced inhibition of the rat vasodepressor sensory CGRPergic outflow is mainly mediated by 5-HT7 receptors via endothelin release, with the possible involvement of ATP-dependent K(+) channels.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Pyrazoles/pharmacology , Receptors, Serotonin/metabolism , Tetrahydronaphthalenes/pharmacology , Animals , Blood Pressure/drug effects , Electric Stimulation , Endothelins/metabolism , Hexamethonium/pharmacology , KATP Channels/metabolism , Male , Methoxamine/pharmacology , Rats , Rats, Wistar
19.
Eur J Pharmacol ; 731: 80-7, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24675150

ABSTRACT

We have demonstrated that the antagonism of 5-HT2 receptors produces an enhancement of serotonergic sympathoinhibitory effect by 5-HT1D and 5-HT7 activation. The aim of this work was to determine mechanisms involved in the 5-hydroxytriptaminergic inhibitory action on the pressor responses elicited by sympathostimulation in pithed rats treated with a 5-HT2 receptor blocker. The blockade of 5-HT2 receptors was induced by orally sarpogrelate treatment (30 mg/kg/day). Two weeks later, animals were anaesthetized and pithed. A bolus injection of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µg/kg), a guanylyl cyclase inhibitor, or indomethacin (2mg/kg), a non-selective COX inhibitor, prior to the infusion of (2S)(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin, AS-19 (5 µg/kg/min) were not able to abolish its inhibitory action. However, i.v. administration of glibenclamide (20mg/kg), a blocker of ATP-sensitive K(+) channels, completely reversed AS-19 sympathoinhibitory action. The inhibitory effect of 2-[5-[3-(4-methylsulfonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indol-3-yl]ethanamine, L-694,247 (5 µg/kg/min) was abolished by indomethacin, whereas pretreatment with ODQ had no effect. Nimesulide (3mg/kg), a COX-2 inhibitor, completely reversed the inhibitory action of L-694,247, whereas 1-[[4,5-bis (4-methoxyphenyl)-2-thiazolyl]carbonyl]-4-methylpiperazine hydrochloride (FR122047) (3mg/kg), a COX-1 inhibitor, partially blocked this action. The sympathoinhibition by 5-HT (20 µg/kg/min) could not be elicited after i.v. treatment with indomethacin plus glibenclamide. In conclusion, these results suggest that in chronic sarpogrelate-treated rats, the inhibitory serotonergic effect of the pressor responses induced by electrical stimulation of the sympathetic outflow via 5-HT7 and 5-HT1D receptor activation is mediated by KATP channel-mediated smooth muscle hyperpolarization and the COX pathway, respectively.


Subject(s)
Biological Factors/metabolism , Electric Stimulation , Prostaglandin-Endoperoxide Synthases/metabolism , Serotonin Antagonists/pharmacology , Serotonin/metabolism , Succinates/pharmacology , Sympathetic Nervous System/drug effects , Animals , Glyburide/pharmacology , Hemodynamics/drug effects , Indomethacin/pharmacology , Male , Nitric Oxide/metabolism , Oxadiazoles/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1D/metabolism , Receptors, Serotonin/metabolism , Serotonin Receptor Agonists/pharmacology , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology , Synaptic Transmission/drug effects
20.
Eur J Pharmacol ; 714(1-3): 65-73, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23769743

ABSTRACT

5-HT2 receptor activation induces vasoconstriction, hypertension and platelet aggregation; therefore, its blocking may be useful in cardiovascular diseases, probably due to alterations in the modulation of serotonergic system. The aim of this study was to evaluate whether 5-HT2 receptor blockade changes serotonergic modulation of sympathetic neurotransmission in pithed rats. Serotonergic modulation of sympathetic neurotransmission was investigated in Wistar rats treated with sarpogrelate, a 5-HT2 receptor antagonist, during 14 days (30 mg/kg/day). After central nervous system destruction, we conducted electrical stimulation throughout the spinal cord flow to study the 5-HT-related products action on adrenergic system. 5-Hydroxytryptamine exerted inhibition of sympathetic outflow in sarpogrelate-treated pithed rats. This effect was mimicked and enhanced by 5-CT (5-HT1/7 receptor agonist). L-694,247 and AS-19, 5-HT1D and 5-HT7 receptor agonists respectively, reproduced this action. Pretreatment with LY310762+SB258719 (5-HT1D and 5-HT7 receptor antagonists, respectively) completely abolished 5-CT inhibitory action. The nature of this action was prejunctional since these agonists did not modify the pressor responses induced by exogenous noradrenaline. Western Blot analysis confirmed a higher expression of 5-HT1D receptors in sarpogrelate-treated rats. Experimental 5-HT2 receptor blockade induces changes in the 5-HT receptors involved in the serotonergic inhibition of sympathetic-induced pressor responses. Prejunctional activation of 5-HT1D and 5-HT7 receptors induces a significantly higher serotonergic inhibition on adrenergic neurotransmission in sarpogrelate-treated pithed rats. The antagonism of 5-HT2 receptors produces an enhancement of serotonergic sympathoinhibitory effect, which may explain the beneficial effects of this blockade in cardiovascular disorders where 5-hydroxytryptamine plays a crucial role.


Subject(s)
Receptor, Serotonin, 5-HT1D/metabolism , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology , Succinates/pharmacology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Synaptic Transmission/drug effects , Animals , Blood Pressure/drug effects , Blood Vessels/drug effects , Blood Vessels/physiology , In Vitro Techniques , Male , Norepinephrine/pharmacology , Rats , Rats, Wistar , Serotonin Receptor Agonists/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL