Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Dent J (Basel) ; 10(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36135161

ABSTRACT

Background: Conventional periodontal therapy relies on bone regeneration strategies utilizing scaffolds made of diverse materials, among which collagen, to promote cell adhesion and growth. Objective: To evaluate periodontal ligament fibroblast (HPdLF) cell adhesion and viability for periodontal regeneration purposes on hydroxyapatite scaffolds containing collagen (HAp-egg shell) combined with polylactic acid−polyglycolic acid copolymer (PLGA) and Platelet-Rich Fibrin (PRF). Methods: Four variations of the HAp-egg shell were used to seed HPdLF for 24 h and evaluate cell viability through a live/dead assay: (1) (HAp-egg shell/PLGA), (2) (HAp-egg shell/PLGA + collagen), (3) (HAp-egg shell/PLGA + PRF) and (4) (HAp-egg shell/PLGA + PRF + collagen). Cell adhesion and viability were determined using confocal microscopy and quantified using central tendency and dispersion measurements; significant differences were determined using ANOVA (p < 0.05). Results: Group 1 presented low cell viability and adhesion (3.70−10.17%); groups 2 and 3 presented high cell viability and low cell adhesion (group 2, 59.2−11.1%, group 3, 58−4.6%); group 4 presented the highest cell viability (82.8%) and moderate cell adhesion (45%) (p = 0.474). Conclusions: The effect of collagen on the HAp-egg shell/PLGA scaffold combined with PRF favored HPdLF cell adhesion and viability and could clinically have a positive effect on bone defect resolution and the regeneration of periodontal ligament tissue.

2.
Eur J Dent ; 15(4): 746-754, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34592770

ABSTRACT

OBJECTIVES: Previous studies showed that noggin gene (NOG) sequence alterations, as well as epigenetic factors, could influence mandibular development. The aim of this study was to analyze clinical characteristics, NOG gene sequences, and promoter methylation sites in patients with mandibular micrognathism. MATERIALS AND METHODS: A total of 35 individuals of five Colombian families were subject to clinical and cephalometric analysis for mandibular micrognathism. One nonaffected individual of each family was included as a control. DNA was isolated from whole blood sample from all individuals by salting out method. Nine NOG gene fragments were amplified by polymerase chain reaction (PCR) and sequenced. Identification of CpG islands for methylation analysis at the NOG gene promoter was performed by MSP-PCR kit (Qiagen R). STATISTICAL ANALYSIS: A descriptive statistical analysis was carried out evaluating the presence or absence of genetics variants and the methylation sites in the NOG gene. RESULTS: NOG sequence results of affected individuals with mandibular micrognathism for one of the families studied demonstrated that they were heterozygous for 672 C/A (new mutation). For a second family, individuals were heterozygous for 567 G/C (single nucleotide polymorphism [SNP] RS116716909). For DNA analyzed from all patients studied, no methylations were observed at the NOG gene promoter region. CONCLUSION: Our results suggested that 672 C/A and 567 G/C variants could be involved in the presence of mandibular micrognathism. Moreover, lack of methylation sites at the NOG gene promoter region of all individuals studied suggests possibly other epigenetic factors could modulate mandibular growth. The search of genetic variants related with mandibular micrognathism will allow to predict in an integral way the development patterns of the patients and therefore establish a better clinical treatment.

SELECTION OF CITATIONS
SEARCH DETAIL