Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Gastroenterology ; 160(5): 1725-1740.e2, 2021 04.
Article in English | MEDLINE | ID: mdl-33309778

ABSTRACT

BACKGROUND & AIMS: We recently showed that alcoholic hepatitis (AH) is characterized by dedifferentiation of hepatocytes and loss of mature functions. Glucose metabolism is tightly regulated in healthy hepatocytes. We hypothesize that AH may lead to metabolic reprogramming of the liver, including dysregulation of glucose metabolism. METHODS: We performed integrated metabolomic and transcriptomic analyses of liver tissue from patients with AH or alcoholic cirrhosis or normal liver tissue from hepatic resection. Focused analyses of chromatin immunoprecipitation coupled to DNA sequencing was performed. Functional in vitro studies were performed in primary rat and human hepatocytes and HepG2 cells. RESULTS: Patients with AH exhibited specific changes in the levels of intermediates of glycolysis/gluconeogenesis, the tricarboxylic acid cycle, and monosaccharide and disaccharide metabolism. Integrated analysis of the transcriptome and metabolome showed the used of alternate energetic pathways, metabolite sinks and bottlenecks, and dysregulated glucose storage in patients with AH. Among genes involved in glucose metabolism, hexokinase domain containing 1 (HKDC1) was identified as the most up-regulated kinase in patients with AH. Histone active promoter and enhancer markers were increased in the HKDC1 genomic region. High HKDC1 levels were associated with the development of acute kidney injury and decreased survival. Increased HKDC1 activity contributed to the accumulation of glucose-6-P and glycogen in primary rat hepatocytes. CONCLUSIONS: Altered metabolite levels and messenger RNA expression of metabolic enzymes suggest the existence of extensive reprogramming of glucose metabolism in AH. Increased HKDC1 expression may contribute to dysregulated glucose metabolism and represents a novel biomarker and therapeutic target for AH.


Subject(s)
Cell Dedifferentiation , Energy Metabolism , Gene Expression Profiling , Glucose/metabolism , Hepatitis, Alcoholic/enzymology , Hepatocytes/enzymology , Hexokinase/metabolism , Liver/enzymology , Metabolomics , Acute Kidney Injury/enzymology , Acute Kidney Injury/genetics , Adaptation, Physiological , Animals , Europe , Female , Gene Expression Regulation, Enzymologic , Glucose-6-Phosphate/metabolism , Glycogen/metabolism , Hep G2 Cells , Hepatitis, Alcoholic/genetics , Hepatitis, Alcoholic/pathology , Hepatocytes/pathology , Hexokinase/genetics , Humans , Liver/pathology , Male , Metabolome , Middle Aged , Rats, Wistar , Transcriptome , United States
2.
Cell Metab ; 26(1): 256-266.e4, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28683291

ABSTRACT

Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle.


Subject(s)
Glucosyltransferases/metabolism , Glycogen/metabolism , Glycoproteins/metabolism , Muscle, Skeletal/physiology , Animals , Energy Metabolism , Glucosyltransferases/genetics , Glycogen Synthase/metabolism , Glycoproteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Oxygen Consumption
3.
Nat Cell Biol ; 19(2): 94-105, 2017 02.
Article in English | MEDLINE | ID: mdl-28092655

ABSTRACT

The cytoplasmic polyadenylation element-binding (CPEB) proteins regulate pre-mRNA processing and translation of CPE-containing mRNAs in early embryonic development and synaptic activity. However, specific functions in adult organisms are poorly understood. Here we show that CPEB4 is required for adaptation to high-fat-diet- and ageing-induced endoplasmic reticulum (ER) stress, and subsequent hepatosteatosis. Stress-activated liver CPEB4 expression is dual-mode regulated. First, Cpeb4 mRNA transcription is controlled by the circadian clock, and then its translation is regulated by the unfolded protein response (UPR) through upstream open reading frames within the 5'UTR. Thus, the CPEB4 protein is synthesized only following ER stress but the induction amplitude is circadian. In turn, CPEB4 activates a second wave of UPR translation required to maintain ER and mitochondrial homeostasis. Our results suggest that combined transcriptional and translational Cpeb4 regulation generates a 'circadian mediator', which coordinates hepatic UPR activity with periods of high ER-protein-folding demand. Accordingly, CPEB4 deficiency results in non-alcoholic fatty liver disease.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/metabolism , Fatty Liver/genetics , Gene Expression Regulation/genetics , RNA-Binding Proteins/genetics , Animals , Endoplasmic Reticulum Stress/genetics , Homeostasis/physiology , Mice , Protein Biosynthesis , RNA Precursors/metabolism , Transcription, Genetic/genetics , Unfolded Protein Response/physiology
4.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R307-14, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27280431

ABSTRACT

McArdle disease (muscle glycogenosis type V) is a disease caused by myophosphorylase deficiency leading to "blocked" glycogen breakdown. A significant but varying glycogen accumulation in especially distal hind limb muscles of mice affected by McArdle disease has recently been demonstrated. In this study, we investigated how myophosphorylase deficiency affects glucose metabolism in hind limb muscle of 20-wk-old McArdle mice and vastus lateralis muscles from patients with McArdle disease. Western blot analysis and activity assay demonstrated that glycogen synthase was inhibited in glycolytic muscle from McArdle mice. The level and activation of proteins involved in contraction-induced glucose transport (AMPK, GLUT4) and glycogen synthase inhibition were increased in quadriceps muscle of McArdle mice. In addition, pCaMKII in quadriceps was reduced, suggesting lower insulin-induced glucose uptake, which could lead to lower glycogen accumulation. In comparison, tibialis anterior, extensor digitorum longus, and soleus had massive glycogen accumulation, but few, if any, changes or adaptations in glucose metabolism compared with wild-type mice. The findings suggest plasticity in glycogen metabolism in the McArdle mouse that is related to myosin heavy chain type IIB content in muscles. In patients, the level of GLUT4 was vastly increased, as were hexokinase II and phosphofructokinase, and glycogen synthase was more inhibited, suggesting that patients adapt by increasing capture of glucose for direct metabolism, thereby significantly reducing glycogen buildup compared with the mouse model. Hence, the McArdle mouse may be a useful tool for further comparative studies of disease mechanism caused by myophosphorylase deficiency and basic studies of metabolic adaptation in muscle.


Subject(s)
Glucose/metabolism , Glycogen Storage Disease Type V/metabolism , Multienzyme Complexes , Muscle, Skeletal/metabolism , Adolescent , Adult , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Species Specificity , Young Adult
5.
Nat Commun ; 7: 11199, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27045898

ABSTRACT

The mechanisms that allow breast cancer (BCa) cells to metabolically sustain rapid growth are poorly understood. Here we report that BCa cells are dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources and that the endothelial lipase (LIPG) fulfils this function. LIPG expression allows the import of lipid precursors, thereby contributing to BCa proliferation. LIPG stands out as an essential component of the lipid metabolic adaptations that BCa cells, and not normal tissue, must undergo to support high proliferation rates. LIPG is ubiquitously and highly expressed under the control of FoxA1 or FoxA2 in all BCa subtypes. The downregulation of either LIPG or FoxA in transformed cells results in decreased proliferation and impaired synthesis of intracellular lipids.


Subject(s)
Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Lipase/metabolism , Lipid Metabolism/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Animals , Biological Transport , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Doxycycline/pharmacology , Enzyme Inhibitors/pharmacology , Female , Hepatocyte Nuclear Factor 3-alpha/antagonists & inhibitors , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-beta/antagonists & inhibitors , Hepatocyte Nuclear Factor 3-beta/genetics , Humans , Lactones/pharmacology , Lipase/antagonists & inhibitors , Lipase/genetics , MCF-7 Cells , Mice , Mice, Nude , Neoplasm Invasiveness , Orlistat , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
6.
Diabetologia ; 59(5): 1012-20, 2016 May.
Article in English | MEDLINE | ID: mdl-26825527

ABSTRACT

AIMS/HYPOTHESIS: Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. METHODS: Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. RESULTS: Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. CONCLUSIONS/INTERPRETATION: Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.


Subject(s)
Glucose/metabolism , Glycogen/metabolism , Insulin-Secreting Cells/metabolism , Animals , Female , Glycogen/physiology , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Homeostasis , Insulin/genetics , Insulin/metabolism , Insulin-Secreting Cells/physiology , Male , Mice , Mice, Knockout
7.
Biochem J ; 472(2): 225-37, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26417114

ABSTRACT

Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.


Subject(s)
Energy Metabolism , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Gluconeogenesis , Glycolysis , Hepatocytes/metabolism , Models, Biological , Animals , Cells, Cultured , Fluorescence Resonance Energy Transfer , Fluorescent Antibody Technique , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/genetics , HeLa Cells , Hepatocytes/cytology , Hepatocytes/enzymology , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Male , Microscopy, Confocal , Protein Transport , Rats, Wistar , Recombinant Fusion Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 111(28): E2831-40, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24982189

ABSTRACT

Glycogen is a primary form of energy storage in eukaryotes that is essential for glucose homeostasis. The glycogen polymer is synthesized from glucose through the cooperative action of glycogen synthase (GS), glycogenin (GN), and glycogen branching enzyme and forms particles that range in size from 10 to 290 nm. GS is regulated by allosteric activation upon glucose-6-phosphate binding and inactivation by phosphorylation on its N- and C-terminal regulatory tails. GS alone is incapable of starting synthesis of a glycogen particle de novo, but instead it extends preexisting chains initiated by glycogenin. The molecular determinants by which GS recognizes self-glucosylated GN, the first step in glycogenesis, are unknown. We describe the crystal structure of Caenorhabditis elegans GS in complex with a minimal GS targeting sequence in GN and show that a 34-residue region of GN binds to a conserved surface on GS that is distinct from previously characterized allosteric and binding surfaces on the enzyme. The interaction identified in the GS-GN costructure is required for GS-GN interaction and for glycogen synthesis in a cell-free system and in intact cells. The interaction of full-length GS-GN proteins is enhanced by an avidity effect imparted by a dimeric state of GN and a tetrameric state of GS. Finally, the structure of the N- and C-terminal regulatory tails of GS provide a basis for understanding phosphoregulation of glycogen synthesis. These results uncover a central molecular mechanism that governs glycogen metabolism.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans/enzymology , Glucosyltransferases , Glycogen Synthase , Glycoproteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell-Free System , Cells, Cultured , Crystallography, X-Ray , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycogen/biosynthesis , Glycogen/chemistry , Glycogen/genetics , Glycogen Synthase/chemistry , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Mice , Mice, Knockout , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Structure-Activity Relationship
10.
Hum Mol Genet ; 23(12): 3147-56, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24452334

ABSTRACT

Lafora disease is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies. It is an autosomal recessive disorder caused by mutations in either the laforin or malin gene. To study whether glycogen is primarily responsible for the neurodegeneration in Lafora disease, we generated malin knockout mice with impaired (totally or partially) glycogen synthesis. These animals did not show the increase in markers of neurodegeneration, the impairments in electrophysiological properties of hippocampal synapses, nor the susceptibility to kainate-induced epilepsy seen in the malin knockout model. Interestingly, the autophagy impairment that has been described in malin knockout animals was also rescued in this double knockout model. Conversely, two other mouse models in which glycogen is over-accumulated in the brain independently of the lack of malin showed impairment in autophagy. Our findings reveal that glycogen accumulation accounts for the neurodegeneration and functional consequences seen in the malin knockout model, as well as the impaired autophagy. These results identify the regulation of glycogen synthesis as a key target for the treatment of Lafora disease.


Subject(s)
Autophagy , Dual-Specificity Phosphatases/metabolism , Glycogen Synthase/genetics , Glycogen/metabolism , Lafora Disease/physiopathology , Ubiquitin-Protein Ligases/genetics , Animals , Biomarkers/metabolism , Disease Models, Animal , Electrical Synapses/metabolism , Epilepsy/chemically induced , Epilepsy/pathology , Glycogen Synthase/metabolism , Hippocampus/physiology , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Kainic Acid/pharmacology , Lafora Disease/metabolism , Lafora Disease/pathology , Mice , Mice, Knockout , Mutation , Protein Tyrosine Phosphatases, Non-Receptor , Ubiquitin-Protein Ligases/metabolism
11.
Acta Diabetol ; 51(4): 543-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24458975

ABSTRACT

Liver and muscle glycogen content is reduced in diabetic patients but there is no information on the effect of diabetes on the glycogen content in the retinal pigment epithelium (RPE). The main aim of the study was to compare the glycogen content in the RPE between diabetic and non-diabetic human donors. Glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, as well as their isoforms, were also assessed. For this purpose, 44 human postmortem eye cups were included (22 from 11 type 2 diabetic and 22 from 11 non-diabetic donors matched by age). Human RPE cells cultured in normoglycemic and hyperglycemic conditions were also analyzed. Glycogen content as well as the mRNA, protein content and enzyme activity of GS and GP were determined. In addition, GS and GP isoforms were characterized. In the RPE from diabetic donors, as well as in RPE cells grown in hyperglycemic conditions, the glycogen content was increased. The increase in glycogen content was associated with an increase in GS without changes in GP levels. In RPE form human donors, the muscle GS isoform but not the liver GS isoform was detected. Regarding GP, the muscle and brain isoform of GP but not the liver GP isoform were detected. We conclude that glycogen storage is increased in the RPE of diabetic patients, and it is associated with an increase in GS activity. Further studies aimed at determining the role of glycogen deposits in the pathogenesis of diabetic retinopathy are warranted.


Subject(s)
Diabetes Mellitus/metabolism , Glycogen/metabolism , Retinal Pigment Epithelium/metabolism , Aged , Aged, 80 and over , Diabetes Mellitus/enzymology , Diabetes Mellitus/genetics , Female , Glycogen Phosphorylase/genetics , Glycogen Phosphorylase/metabolism , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Humans , Liver/enzymology , Liver/metabolism , Male , Middle Aged , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , Retinal Pigment Epithelium/enzymology , Tissue Donors
12.
Diabetes ; 62(12): 4070-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23990365

ABSTRACT

The liver responds to an increase in blood glucose levels in the postprandial state by uptake of glucose and conversion to glycogen. Liver glycogen synthase (GYS2), a key enzyme in glycogen synthesis, is controlled by a complex interplay between the allosteric activator glucose-6-phosphate (G6P) and reversible phosphorylation through glycogen synthase kinase-3 and the glycogen-associated form of protein phosphatase 1. Here, we initially performed mutagenesis analysis and identified a key residue (Arg(582)) required for activation of GYS2 by G6P. We then used GYS2 Arg(582)Ala knockin (+/R582A) mice in which G6P-mediated GYS2 activation had been profoundly impaired (60-70%), while sparing regulation through reversible phosphorylation. R582A mutant-expressing hepatocytes showed significantly reduced glycogen synthesis with glucose and insulin or glucokinase activator, which resulted in channeling glucose/G6P toward glycolysis and lipid synthesis. GYS2(+/R582A) mice were modestly glucose intolerant and displayed significantly reduced glycogen accumulation with feeding or glucose load in vivo. These data show that G6P-mediated activation of GYS2 plays a key role in controlling glycogen synthesis and hepatic glucose-G6P flux control and thus whole-body glucose homeostasis.


Subject(s)
Glucose-6-Phosphate/metabolism , Glycogen Synthase/metabolism , Hepatocytes/metabolism , Liver Glycogen/biosynthesis , Liver/metabolism , Animals , Blood Glucose/metabolism , Glucose/pharmacology , Glycogen Synthase/genetics , Hepatocytes/drug effects , Homeostasis/drug effects , Homeostasis/physiology , Insulin/pharmacology , Liver/drug effects , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Phosphorylation
13.
J Cell Biochem ; 114(7): 1653-64, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23386391

ABSTRACT

Glycogen is the main source of glucose for many biological events. However, this molecule may have other functions, including those that have deleterious effects on cells. The rate-limiting enzyme in glycogen synthesis is glycogen synthase (GS). It is encoded by two genes, GYS1, expressed in muscle (muscle glycogen synthase, MGS) and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase, LGS). Expression of GS and its activity have been widely studied in many tissues. To date, it is not clear which GS isoform is responsible for glycogen synthesis and the role of glycogen in testis. Using RT-PCR, Western blot and immunofluorescence, we have detected expression of MGS but not LGS in mice testis during development. We have also evaluated GS activity and glycogen storage at different days after birth and we show that both GS activity and levels of glycogen are higher during the first days of development. Using RT-PCR, we have also shown that malin and laforin are expressed in testis, key enzymes for regulation of GS activity. These proteins form an active complex that regulates MGS by poly-ubiquitination in both Sertoli cell and male germ cell lines. In addition, PTG overexpression in male germ cell line triggered apoptosis by caspase3 activation, proposing a proapoptotic role of glycogen in testis. These findings suggest that GS activity and glycogen synthesis in testis could be regulated and a disruption of this process may be responsible for the apoptosis and degeneration of seminiferous tubules and possible cause of infertility.


Subject(s)
Germ Cells/cytology , Germ Cells/metabolism , Glycogen Synthase/metabolism , Glycogen/metabolism , Protein Isoforms/metabolism , Testis/cytology , Testis/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Glycogen Synthase/genetics , Immunoblotting , Male , Mice , Mice, Transgenic , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seminiferous Tubules/cytology , Seminiferous Tubules/metabolism , Testis/enzymology
14.
EMBO Mol Med ; 4(8): 719-29, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22549942

ABSTRACT

Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration.


Subject(s)
Glycogen Storage Disease/genetics , Glycogen Synthase/metabolism , Glycogen/metabolism , Neurodegenerative Diseases/etiology , Neurons/enzymology , Neurons/pathology , Animals , Disease Models, Animal , Drosophila , Glycogen Storage Disease/pathology , Glycogen Storage Disease/physiopathology , Glycogen Synthase/genetics , Locomotion , Longevity , Mice , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology
15.
EMBO Mol Med ; 3(11): 667-81, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21882344

ABSTRACT

Lafora disease (LD) is caused by mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of polyglucosan inclusions called Lafora Bodies (LBs). Malin knockout (KO) mice present polyglucosan accumulations in several brain areas, as do patients of LD. These structures are abundant in the cerebellum and hippocampus. Here, we report a large increase in glycogen synthase (GS) in these mice, in which the enzyme accumulates in LBs. Our study focused on the hippocampus where, under physiological conditions, astrocytes and parvalbumin-positive (PV(+)) interneurons expressed GS and malin. Although LBs have been described only in neurons, we found this polyglucosan accumulation in the astrocytes of the KO mice. They also had LBs in the soma and some processes of PV(+) interneurons. This phenomenon was accompanied by the progressive loss of these neuronal cells and, importantly, neurophysiological alterations potentially related to impairment of hippocampal function. Our results emphasize the relevance of the laforin-malin complex in the control of glycogen metabolism and highlight altered glycogen accumulation as a key contributor to neurodegeneration in LD.


Subject(s)
Disease Models, Animal , Glycogen Synthase/metabolism , Lafora Disease/enzymology , Lafora Disease/physiopathology , Mice , Nerve Degeneration/enzymology , Animals , Astrocytes/enzymology , Female , Glycogen/metabolism , Glycogen Synthase/genetics , Hippocampus/enzymology , Humans , Inclusion Bodies/enzymology , Inclusion Bodies/genetics , Lafora Disease/genetics , Lafora Disease/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neurons/enzymology
16.
J Biol Chem ; 285(48): 37170-7, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-20841354

ABSTRACT

In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.


Subject(s)
Blood Glucose , Gene Expression , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Liver Glycogen/metabolism , Liver/metabolism , Animals , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Transgenic , Rats, Wistar
17.
PLoS One ; 5(3): e9644, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20300197

ABSTRACT

When oxygen becomes limiting, cells reduce mitochondrial respiration and increase ATP production through anaerobic fermentation of glucose. The Hypoxia Inducible Factors (HIFs) play a key role in this metabolic shift by regulating the transcription of key enzymes of glucose metabolism. Here we show that oxygen regulates the expression of the muscle glycogen synthase (GYS1). Hypoxic GYS1 induction requires HIF activity and a Hypoxia Response Element within its promoter. GYS1 gene induction correlated with a significant increase in glycogen synthase activity and glycogen accumulation in cells exposed to hypoxia. Significantly, knockdown of either HIF1alpha or GYS1 attenuated hypoxia-induced glycogen accumulation, while GYS1 overexpression was sufficient to mimic this effect. Altogether, these results indicate that GYS1 regulation by HIF plays a central role in the hypoxic accumulation of glycogen. Importantly, we found that hypoxia also upregulates the expression of UTP:glucose-1-phosphate urydylyltransferase (UGP2) and 1,4-alpha glucan branching enzyme (GBE1), two enzymes involved in the biosynthesis of glycogen. Therefore, hypoxia regulates almost all the enzymes involved in glycogen metabolism in a coordinated fashion, leading to its accumulation. Finally, we demonstrated that abrogation of glycogen synthesis, by knock-down of GYS1 expression, impairs hypoxic preconditioning, suggesting a physiological role for the glycogen accumulated during chronic hypoxia. In summary, our results uncover a novel effect of hypoxia on glucose metabolism, further supporting the central importance of metabolic reprogramming in the cellular adaptation to hypoxia.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation , Glycogen Synthase/metabolism , Glycogen/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , 1,4-alpha-Glucan Branching Enzyme/metabolism , Animals , Genes, Reporter , Glycogen/chemistry , Humans , Mice , Models, Biological , Muscles , Promoter Regions, Genetic , RNA Interference , Response Elements
18.
J Biol Chem ; 284(10): 6370-8, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19124463

ABSTRACT

Eukaryotic glycogen synthase activity is regulated by reversible phosphorylation at multiple sites. Of the two GS isoforms found in mammals, the muscle enzyme (muscle glycogen synthase) has received more attention and the relative importance of every known phosphorylation site in the control of its activity and intracellular distribution has been previously addressed. We have analyzed the impact of the dephosphorylation at the homologous sites of the glycogen synthase liver (LGS) isoform. Serine residues at these sites were replaced by non-phosphorylatable alanine residues, singly or in pairs, and the resultant LGS variants were expressed in cultured cells using adenoviral vectors. The sole mutation at site 2 (Ser7) yielded an enzyme that was almost fully active and able to induce glycogen deposition in primary hepatocytes incubated in the absence of glucose and in FTO2B cells, a cell line that does not normally synthesize glycogen. Mutation at site 2 was also sufficient to trigger the aggregation and translocation of LGS from the cytoplasm to the hepatocyte cell cortex in the absence of glucose. However, this redistribution was not observed in hepatocytes incubated without glucose when an additional mutation (E509A), which renders the enzyme inactive, was introduced. This result suggests that LGS translocation is strictly dependent on glycogen synthesis.


Subject(s)
Glucose/metabolism , Glycogen Synthase/metabolism , Glycogen/biosynthesis , Liver/enzymology , Adenoviridae , Amino Acid Substitution , Animals , Cell Line, Tumor , Genetic Vectors , Glycogen/genetics , Glycogen Synthase/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Mutation, Missense , Organ Specificity/physiology , Phosphorylation/genetics , Protein Transport/physiology , Rats , Rats, Wistar
19.
J Biol Chem ; 283(9): 5642-9, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18165236

ABSTRACT

Glucokinase (GK, hexokinase type IV) is required for the accumulation of glycogen in adult liver and hepatoma cells. Paradoxically, mammalian embryonic livers store glycogen successfully in the absence of GK. Here we address how mammalian embryonic livers, but not adult livers or hepatoma cells, manage to accumulate glycogen in the absence of this enzyme. Hexokinase type I or II (HKI, HKII) substitutes for GK in hepatomas and in embryonic livers. We engineered FTO2B cells, a hepatoma cell line in which GK is not expressed, to unveil the modifications required to allow them to accumulate glycogen. In the light of these results, we then examined glycogen metabolism in embryonic liver. Glycogen accumulation in FTO2B cells can be triggered through elevated expression of HKI or either of the protein phosphatase 1 regulatory subunits, namely PTG or G L. Between these two strategies to activate glycogen deposition in the absence of GK, embryonic livers choose to express massive levels of HKI and HKII. We conclude that although the GK/liver glycogen synthase tandem is ideally suited to store glycogen in liver when blood glucose is high, the substitution of HKI for GK in embryonic livers allows the HKI/liver glycogen synthase tandem to make glycogen independently of the glucose concentration in blood, although it requires huge levels of HK. Moreover, the physiological consequence of the HK isoform switch is that the embryonic liver safeguards its glycogen deposits, required as the main source of energy at birth, from maternal starvation.


Subject(s)
Embryo, Mammalian/enzymology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Glucokinase , Glycogen/biosynthesis , Hexokinase/biosynthesis , Liver/enzymology , Animals , Blood Glucose/genetics , Blood Glucose/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Female , Glycogen/genetics , Glycogen Synthase/genetics , Glycogen Synthase/metabolism , Hexokinase/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Liver/embryology , Mice , Pregnancy , Rats
20.
Hum Mol Genet ; 17(5): 667-78, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18029386

ABSTRACT

Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggested that the interactions between laforin and PTG (a regulatory subunit of type 1 protein phosphatase) and between laforin and malin are critical in the pathogenesis of LD. Here, we show that the laforin-malin complex downregulates PTG-induced glycogen synthesis in FTO2B hepatoma cells through a mechanism involving ubiquitination and degradation of PTG. Furthermore, we demonstrate that the interaction between laforin and malin is a regulated process that is modulated by the AMP-activated protein kinase (AMPK). These findings provide further insights into the critical role of the laforin-malin complex in the control of glycogen metabolism and unravel a novel link between the energy sensor AMPK and glycogen metabolism. These data advance our understanding of the functional role of laforin and malin, which hopefully will facilitate the development of appropriate LD therapies.


Subject(s)
Carrier Proteins/genetics , Glycogen/biosynthesis , Multienzyme Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , AMP-Activated Protein Kinases , Adenoviridae/genetics , Amino Acid Sequence , Animals , Binding Sites , Carrier Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Physiological Phenomena , Escherichia coli/genetics , Glycogen/analysis , Green Fluorescent Proteins/metabolism , Humans , Kidney/cytology , Models, Biological , Molecular Sequence Data , Mutation , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Statistics as Topic , Transfection , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...