Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 329, 2019.
Article in English | MEDLINE | ID: mdl-31068772

ABSTRACT

Mitochondrial quality control is important in neurological diseases, but in genetic Parkinson's disease caused by mutations in PINK and parkin mitochondrial degradation through autophagy is crucial. Reductions in autophagy and mitophagy are implicated in aging, age related diseases and Parkinson. The parkin null mice (PK-KO) show only a subtle phenotype, apparent with age or with stressors. We have studied the changes in the lipidomic composition of the mitochondrial membranes isolated from the brains of young and old PK-KO mice and compared them to wild type in order to determine possible implications for Parkinson's disease pathology. We observed an increase in the levels of phosphatidylethanolamine in the young PK-KO mice that is lost in the old and correlate to changes in the phosphatidylserine decarboxylase. PK-KO old mice mitochondria showed lower phosphatidylglicerol and phosphatidylinositol levels and higher levels of some forms of hydroxylated ceramides. Regarding cardiolipins there were changes in the degree of saturation mainly with age. The lipidomic composition discriminates between the study groups using partial least square discriminant analysis. We discuss the relevance of the lipid changes for the autophagic activity, the mitophagy, the mitochondrial activity and the Parkinson's disease pathology in absence of parkin.

2.
J Nutr Biochem ; 63: 197-205, 2019 01.
Article in English | MEDLINE | ID: mdl-30414540

ABSTRACT

The evaluation of the benefits of omega-3 fatty acid supplementation in humans requires the identification and characterization of suitable biomarkers of its incorporation in the body. The reference method for the evaluation of omega-3, gas chromatography, is difficult to apply in clinical practice because of its low throughput and does not provide information about the incorporation of specific fatty acids in lipid species and the potential effects of supplementation on lipid classes. We used a quantitative lipidomic approach to follow the incorporation of omega-3 fatty acids into plasma lipids in cystic fibrosis patients (n=50) from a randomized controlled clinical trial after the supplementation of seaweed oil enriched with docosahexaenoic acid (DHA). Lipidomic analysis accurately showed the distribution of fatty acids in different lipid classes after omega-3 supplementation, and the performance in determining the compliance to supplementation was similar to that of gas chromatography coupled to mass spectrometry. Twelve months after fatty acid supplementation, DHA was predominantly incorporated into highly unsaturated cholesteryl esters (110.9±16.2 vs. 278.6±32.6 µM, mean±S.E.M.) and phosphatidylcholine (142.4±11.9 vs. 272.9±21.4 µM) and, to a lesser extent, into phosphatidylethanolamine (9.4±0.8 vs. 15.5±1.5 µM) and triglycerides (0.4±0.04 vs. 1.1±0.12 µM). In addition, a technique was developed for the fast measurement of the DHA/arachidonic acid ratio to simplify the follow-up of nutritional intervention with DHA-enriched foods. We conclude that lipidomics is a suitable approach for monitoring the incorporation of omega-3 fatty acids in nutritional studies.


Subject(s)
Cystic Fibrosis/diet therapy , Fatty Acids, Omega-3/pharmacology , Lipids/blood , Cystic Fibrosis/blood , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Double-Blind Method , Fatty Acids/blood , Humans , Lipidomics/methods , Seaweed , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...