Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Respir Cell Mol Biol ; 66(5): 497-509, 2022 05.
Article in English | MEDLINE | ID: mdl-35167418

ABSTRACT

The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-ß, TSP1 (thrombospondin-1), NOX4, IL-1ß, and NRF2; 3) plasma eNAMPT and IL-1ß concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Alarmins/metabolism , Animals , Antibodies, Monoclonal , Cytokines/metabolism , Lung/pathology , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Nicotinamide Phosphoribosyltransferase/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Thorax , Toll-Like Receptor 4/metabolism
2.
Sci Rep ; 12(1): 696, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027578

ABSTRACT

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Subject(s)
Acute Chest Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Antibodies, Neutralizing/metabolism , Biomarkers/metabolism , COVID-19/metabolism , Disease Models, Animal , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley , SARS-CoV-2/pathogenicity , Swine
3.
Transl Res ; 239: 44-57, 2022 01.
Article in English | MEDLINE | ID: mdl-34139379

ABSTRACT

Therapeutic strategies to prevent or reduce the severity of radiation pneumonitis are a serious unmet need. We evaluated extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a damage-associated molecular pattern protein (DAMP) and Toll-Like Receptor 4 (TLR4) ligand, as a therapeutic target in murine radiation pneumonitis. Radiation-induced murine and human NAMPT expression was assessed in vitro, in tissues (IHC, biochemistry, imaging), and in plasma. Wild type C57Bl6 mice (WT) and Nampt+/- heterozygous mice were exposed to 20Gy whole thoracic lung irradiation (WTLI) with or without weekly IP injection of IgG1 (control) or an eNAMPT-neutralizing polyclonal (pAb) or monoclonal antibody (mAb). BAL protein/cells and H&E staining were used to generate a WTLI severity score. Differentially-expressed genes (DEGs)/pathways were identified by RNA sequencing and bioinformatic analyses. Radiation exposure increases in vitro NAMPT expression in lung epithelium (NAMPT promoter activity) and NAMPT lung tissue expression in WTLI-exposed mice. Nampt+/- mice and eNAMPT pAb/mAb-treated mice exhibited significant histologic attenuation of WTLI-mediated lung injury with reduced levels of BAL protein and cells, and plasma levels of eNAMPT, IL-6,  and IL-1ß. Genomic and biochemical studies from WTLI-exposed lung tissues highlighted dysregulation of NFkB/cytokine and MAP kinase signaling pathways which were rectified by eNAMPT mAb treatment. The eNAMPT/TLR4 pathway is essentially involved in radiation pathobiology with eNAMPT neutralization an effective therapeutic strategy to reduce the severity of radiation pneumonitis.


Subject(s)
Antibodies, Neutralizing/pharmacology , Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Radiation Pneumonitis/metabolism , Toll-Like Receptor 4/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Cytokines/blood , Cytokines/genetics , Cytokines/immunology , Humans , Lung/metabolism , Lung/pathology , Lung/radiation effects , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/radiation effects , Male , Mice, Inbred C57BL , Mice, Mutant Strains , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/blood , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/immunology , Radiation Pneumonitis/drug therapy , Signal Transduction/drug effects
4.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34959723

ABSTRACT

Prostate cancer (PCa) is the major cause of cancer-related death in males; however, effective treatments to prevent aggressive progression remain an unmet need. We have previously demonstrated that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator that promotes PCa invasion. In the current study, we further investigate the therapeutic effects of an eNAMPT-neutralizing humanized monoclonal antibody (ALT-100 mAb) in preclinical PCa orthotopic xenograft models. We utilized human aggressive PCa cells (DU145 or PC3) for prostate implantation in SCID mice receiving weekly intraperitoneal injections of either ALT-100 mAb or IgG/PBS (control) for 12 weeks. Prostatic tumors and solid organs were examined for tumor growth, invasion, and metastasis and for biochemical and immunohistochemistry evidence of NFκB activation. ALT-100 mAb treatment significantly improved overall survival of SCID mice implanted with human PCa orthotopic prostate xenografts while inducing tumor necrosis, decreasing PCa proliferation and reducing local invasion and distal metastases. The ALT-100 mAb inhibits NFκB phosphorylation and signaling in PCa cells both in vitro and in vivo. This study demonstrates that eNAMPT neutralization effectively prevents human PCa aggressive progression in preclinical models, indicating its high potential to directly address the unmet need for an effective targeted therapy for patients with aggressive PCa.

5.
Eur Respir J ; 57(5)2021 05.
Article in English | MEDLINE | ID: mdl-33243842

ABSTRACT

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Antibodies, Monoclonal , Humans , Mice , Mice, Inbred C57BL , SARS-CoV-2
6.
EBioMedicine ; 61: 103059, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33045468

ABSTRACT

BACKGROUND: There remains a serious need to prevent the progression of invasive prostate cancer (PCa). We previously showed that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator via TLR4 ligation which has been implicated in PCa progression. Here we investigate the role of eNAMPT as a diagnostic biomarker and therapeutic target in the progression of PCa. METHODS: Tumor NAMPT expression and plasma eNAMPT level were evaluated in human subjects with various PCa tumor stages and high risk subjects followed-up clinically for PCa. The genetic regulation of NAMPT expression in PCa cells and the role of eNAMPT in PCa invasion were investigated utilizing in vitro and in vivo models. FINDINGS: Marked NAMPT expression was detected in human extraprostatic-invasive PCa tissues compared to minimal expression of organ-confined PCa. Plasma eNAMPT levels were significantly elevated in PCa subjects compared to male controls, and significantly greater in subjects with extraprostatic-invasive PCa compared to subjects with organ-confined PCa. Plasma eNAMPT levels showed significant predictive value for diagnosing PCa. NAMPT expression and eNAMPT secretion were highly upregulated in human PCa cells in response to hypoxia-inducible factors and EGF. In vitro cell culture and in vivo preclinical mouse model studies confirmed eNAMPT-mediated enhancement of PCa invasiveness into muscle tissues and dramatic attenuation of PCa invasion by weekly treatment with an eNAMPT-neutralizing polyclonal antibody. INTERPRETATION: This study suggests that eNAMPT is a potential biomarker for PCa, especially invasive PCa. Neutralization of eNAMPT may be an effective therapeutic approach to prevent PCa invasion and progression.


Subject(s)
Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor , Case-Control Studies , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Heterografts , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Muscle, Smooth/metabolism , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Prostatic Neoplasms/diagnosis , ROC Curve
7.
Pulm Circ ; 10(1)2020.
Article in English | MEDLINE | ID: mdl-32095229

ABSTRACT

RATIONALE: Vascular permeability is a hallmark of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury pathobiology; however, the mechanisms underlying this vascular dysregulation remain unclear, thereby impairing the development of desperately needed effective therapeutics. We have shown that sphingosine-1-phosphate (S1P) and 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720) analogues are useful tools for exploring vascular barrier regulation mechanisms. OBJECTIVE: To experimentally define the effects of FTY720 regioisomers on lung endothelial cell barrier regulation. METHODS: Specific barrier-regulatory receptor and kinase inhibitors were utilized to probe signaling mechanisms involved in FTY720 regioisomer-mediated human lung endothelial cell barrier responses (trans-endothelial electrical resistance, TER). Docking simulations with the S1P1 receptor were performed to further evaluate FTY720 regioisomer signaling. RESULTS: FTY720 regioisomers produced potent endothelial cell barrier disruption reflected by declines in TER alterations. Pharmacologic inhibition of Gi-coupled S1P receptors (S1P1, S1P2, S1P3) failed to alter FTY720 regioisomer-mediated barrier disruption; findings that were corroborated by docking simulations demonstrating FTY720 regiosomers were repelled from S1P1 docking, in contrast to strong S1P1 binding elicited by S1P. Inhibition of either the barrier-disrupting PAR-1 receptor, the VEGF receptor, Rho-kinase, MAPK, NFkB, or PI3K failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. While FTY720 regioisomers significantly increased protein phosphatase 2 (PP2A) activity, PP2A inhibitors failed to alter FTY720 regioisomer-induced endothelial cell barrier disruption. CONCLUSIONS: Together, these results imply a vexing model of pulmonary vascular barrier dysregulation in response to FTY720-related compounds and highlight the need for further insights into mechanisms of vascular integrity required to promote the development of novel therapeutic tools to prevent or reverse the pulmonary vascular leak central to ARDS outcomes.

8.
Am J Physiol Lung Cell Mol Physiol ; 312(4): L452-L476, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27979857

ABSTRACT

Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.


Subject(s)
Endothelial Cells/metabolism , Genomics , Molecular Targeted Therapy , Signal Transduction , Ventilator-Induced Lung Injury/genetics , Ventilator-Induced Lung Injury/therapy , Animals , Humans , Models, Biological , Stress, Mechanical
9.
Methods Mol Biol ; 763: 333-54, 2011.
Article in English | MEDLINE | ID: mdl-21874463

ABSTRACT

The methods for assessment of endothelial barrier permeability are vital tools of experimental biology. They allow us to measure permeability of endothelial monolayer in cell culture and in lung vessels or to determine formation of tissue edema resulting from increased permeability of vasculature. This chapter provides an overview of the most common protocols.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Lung/metabolism , Organ Culture Techniques/methods , Potentiometry/methods , Pulmonary Edema/metabolism , Animals , Capillary Permeability , Cell Membrane Permeability , Cells, Cultured , Diffusion Chambers, Culture , Electric Impedance , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Evans Blue/analysis , Intercellular Junctions/metabolism , Kinetics , Lung/cytology , Mice , Organ Size , Permeability , Pulmonary Edema/physiopathology , Serum Albumin, Radio-Iodinated/analysis , Serum Albumin, Radio-Iodinated/metabolism
10.
Microvasc Res ; 70(3): 142-51, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16188281

ABSTRACT

Prior genomic and genetic studies identified pre-B-cell colony-enhancing factor (PBEF) as a novel candidate gene and biomarker in acute lung injury (ALI). As increased vascular permeability is a cardinal feature of ALI, we assessed the role of PBEF in in vitro vascular barrier regulation using confluent human pulmonary artery endothelial cell (HPAEC) monolayers. Reductions in PBEF protein expression (>70%) by siRNA significantly attenuated EC barrier dysfunction induced by the potent edemagenic agent, thrombin, reflected by reductions in transendothelial electric resistance (TER, approximately 60% reduction). Furthermore, PBEF siRNA blunted thrombin-mediated increases in Ca(2+) entry, polymerized actin formation, and myosin light chain phosphorylation, events critical to the thrombin-mediated permeability response. Finally, PBEF siRNA also significantly inhibited thrombin-stimulated increase of IL-8 secretion in HPAEC, a chemokine known to induce actin fiber formation and intercellular gap formation of endothelial cells. Taken together, these studies demonstrate that PBEF may be required for complete expression of the thrombin-induced inflammatory response and reveal potentially novel role for PBEF in the regulation of EC Ca(2+)-dependent cytoskeletal rearrangement and endothelial barrier dysfunction. Ongoing studies will continue to address the molecular mechanisms by which PBEF contributes to ALI susceptibility.


Subject(s)
B-Lymphocytes/metabolism , Cytokines/physiology , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Lung/pathology , Thrombin/metabolism , Actins/chemistry , Base Sequence , Biomarkers , Blotting, Western , Calcium/metabolism , Cells, Cultured , Chemokines/metabolism , Cytoskeleton/metabolism , Electric Impedance , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Silencing , Humans , Inflammation , Interleukin-8/metabolism , Microcirculation , Microscopy, Fluorescence , Molecular Sequence Data , Nicotinamide Phosphoribosyltransferase , Phosphorylation , Pulmonary Artery/cytology , RNA, Small Interfering/metabolism , Thrombin/chemistry , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...