Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(5): e17296, 2024 May.
Article in English | MEDLINE | ID: mdl-38715312

ABSTRACT

Prospective risks from climate change impacts in ocean and coastal systems are urging the implementation of nature-based solutions (NBS). These are climate-resilient strategies to maintain biodiversity and the delivery of ecosystem services, contributing to the adaptation of social-ecological systems and the mitigation of climate-related impacts. However, the effectiveness of measures like marine restoration or conservation is not exempt from the impacts of climate change, and the degree to which they can sustain biodiversity and ecosystem services remains unknown. Such uncertainty, together with the slow pace of implementation, causes decision-makers and societies to demand a better understanding of NBS effects. To address this gap, in this study, we use the risk mitigation capacity of marine NBS as a proxy for their effectiveness while providing a toolset for the implementation of the method. The method considers environmental data and relies on expert elicitation, allowing us to go beyond current practice to evaluate the effectiveness of NBS in reducing habitat or species risks under different future socio-political and climate-change scenarios. As a result, we present a ready-to-use tool, and supporting materials, for the implementation of the Climate Risk Assessment method and an illustrative example considering the application of the NBS "nature-inclusive harvesting" in two shellfisheries. The method works as a rapid assessment that guarantees comparability across sites and species due to its low data or resource demand, so it can be widely incorporated to adaptation policies across the marine realm.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Ecosystem , Risk Assessment/methods , Conservation of Natural Resources/methods , Oceans and Seas
2.
Sci Total Environ ; 929: 172536, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643886

ABSTRACT

Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity. Fewer trophic interactions and increased connectance indicated that the community became dominated by generalists adapting to alternative resources, leading to simpler but more connected food webs in contaminated environments. Decreased mean body mass, shorter food chains, and the dominance of small detritivores such as Capitella capitata near to structures suggested a disproportionate loss of larger organisms from higher trophic levels. These patterns were associated with concentrations of hydrocarbons and heavy metals that exceed OSPAR's guideline thresholds of sediment toxicity. This study provides new evidence to better quantify and manage the environmental consequences of oil and gas exploitation at sea.


Subject(s)
Biodiversity , Environmental Monitoring , Food Chain , Invertebrates , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Aquatic Organisms , North Sea , Metals, Heavy/analysis , Oil and Gas Fields , Geologic Sediments/chemistry
3.
Sci Data ; 9(1): 339, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705559

ABSTRACT

Biological traits analysis (BTA) provides insight into causes and consequences of biodiversity change that cannot be achieved using traditional taxonomic approaches. However, acquiring information on biological traits (i.e., the behavioural, morphological, and reproductive characteristics of taxa) can be extremely time-consuming, especially for large community datasets, thus hindering the successful application of BTA. Here, we present information on ten key biological traits for over a thousand marine benthic invertebrate taxa surveyed in Northwest Europe (mainly the UK shelf). Scores of 0 to 3 are provided to indicate our confidence that taxa exhibit each possible mode of trait expression. The information was acquired over a decade through an extensive appraisal of relevant sources, including peer-reviewed papers, books, online material and, where necessary, professional judgement. These data may be inspected, used, and augmented by fellow researchers, thus assisting in the wider application of BTA in marine benthic ecology.


Subject(s)
Aquatic Organisms , Biodiversity , Invertebrates , Animals , Ecosystem , Environmental Monitoring , Europe
4.
J Environ Manage ; 315: 115173, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35526396

ABSTRACT

Over the last years, the development of offshore renewable energy installations such as offshore wind farms led to an increasing number of man-made structures in marine environments. Since 2009, benthic impact monitoring programs were carried out in wind farms installed in the southern North Sea. We collated and analyzed data sets from three major monitoring programs. Our analysis considered a total of 2849 sampling points converted to a set of biodiversity response metrics. We analyzed biodiversity changes related to the implementation of offshore wind farms and generalized the correlation of these changes with spatial and temporal patterns. Our results demonstrate that depth, season and distance to structure (soft-bottom community) consistently determined diversity indicators and abundance parameters, whereas the age and the country affiliation were significantly related to some but not all indices. The water depth was the most important structuring factor for fouling communities while seasonal effects were driving most of the observed changes in soft-sediment communities. We demonstrate that a meta-analysis can provide an improved level of understanding of ecological patterns on large-scale effects of anthropogenic structures on marine biodiversity, which were not visible in single monitoring studies. We believe that meta-analyses should become an indispensable tool for management of offshore wind farm effects in the future, particularly in the view of the foreseen development of offshore renewable energies. This might lead to a better picture and more comprehensive view on potential alterations. However, this requires a modern open-source data policy and data management, across institutions and across national borders.


Subject(s)
Energy-Generating Resources , Wind , Biodiversity , Farms , Humans , North Sea
5.
Sci Total Environ ; 740: 140042, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32927538

ABSTRACT

There is increasing interest in understanding potential impacts of complex pollutant profiles to long-lived species such as the green sea turtle (Chelonia mydas), a threatened megaherbivore resident in north Australia. Dietary ingestion may be a key exposure route for metals in these animals and marine plants can accumulate metals at higher concentrations than the surrounding environment. We investigated concentrations of 19 metals and metalloids in C. mydas forage samples collected from a group of offshore coral cays and two coastal bays over a period of 2-3 years. Although no samples exceeded sediment quality guidelines, coastal forage Co, Fe, and V concentrations were up to 2-fold higher, and offshore forage Sr concentrations were ~3-fold higher, than global seagrass means. Principal Component Analysis differentiated coastal bay from coral cay forage according to patterns consistent with underlying terrigenous-type or marine carbonate-type sediment geochemistry, such that coastal bay forage was higher in Fe, Co, Mn, Cu, and Mo (and others) but forage from coral cays was higher in Sr and U. Forage from the two coastal bays was differentiated according to temporal variation in metal profiles, which may be associated with a more episodic sediment disturbance regime in one of the bays. For all study locations, some forage metal concentrations were higher than previously reported in the global literature. Our results suggest that forage metal profiles may be influenced by the presence of some metals in insoluble forms or bound to ultra-fine sediment particles adhered to forage surfaces. Metal concentrations in Great Barrier Reef forage may be present at levels higher than expected from the global seagrass literature and appear strongly influenced by underlying sediment geochemistry.


Subject(s)
Anthozoa , Metals, Heavy/analysis , Turtles , Water Pollutants, Chemical/analysis , Animals , Australia , Bays , Environmental Monitoring , Geologic Sediments
6.
Proc Biol Sci ; 287(1919): 20192143, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31992167

ABSTRACT

Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.


Subject(s)
Aquatic Organisms/physiology , Invertebrates/physiology , Animals , Behavior, Animal , Biodiversity , Echinodermata/physiology , Ecosystem , Phenotype
7.
Proc Biol Sci ; 286(1901): 20190287, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30991928

ABSTRACT

There is now strong evidence that ecosystem properties are influenced by alterations in biodiversity. The consensus that has emerged from over two decades of research is that the form of the biodiversity-functioning relationship follows a saturating curve. However, the foundation from which these conclusions are drawn mostly stems from empirical investigations that have not accounted for post-extinction changes in community composition and structure, or how surviving species respond to new circumstances and modify their contribution to functioning. Here, we use marine sediment-dwelling invertebrate communities to experimentally assess whether post-extinction compensatory mechanisms (simulated by increasing species biomass) have the potential to alter biodiversity-ecosystem function relations. Consistent with recent numerical simulations, we find that the form of the biodiversity-function curve is dependent on whether or not compensatory responses are present, the cause and extent of extinction, and species density. When species losses are combined with the compensatory responses of surviving species, both community composition, dominance structure, and the pool and relative expression of functionally important traits change and affect species interactions and behaviour. These observations emphasize the importance of post-extinction community composition in determining the stability of ecosystem functioning following extinction. Our results caution against the use of the generalized biodiversity-function curve when generating probabilistic estimates of post-extinction ecosystem properties for practical application.


Subject(s)
Amphipoda/physiology , Biodiversity , Biomass , Food Chain , Snails/physiology , Animals , England , Geologic Sediments
8.
Ecol Appl ; 28(5): 1302-1312, 2018 07.
Article in English | MEDLINE | ID: mdl-29679428

ABSTRACT

Bottom fishing such as trawling and dredging may pose serious risks to the seabed and benthic habitats, calling for a quantitative assessment method to evaluate the impact and guide management to develop mitigation measures. We provide a method to estimate the sensitivity of benthic habitats based on the longevity composition of the invertebrate community. We hypothesize that long-lived species are more sensitive to trawling mortality due to their lower pace of life (i.e., slower growth, late maturation). We analyze data from box-core and grab samples taken from 401 stations in the English Channel and southern North Sea to estimate the habitat-specific longevity composition of the benthic invertebrate community and of specific functional groups (i.e., suspension feeders and bioturbators), and examine how bottom trawling affects the longevity biomass composition. The longevity biomass composition differed between habitats governed by differences in sediment composition (gravel and mud content) and tidal bed-shear stress. The biomass proportion of long-lived species increased with gravel content and decreased with mud content and shear stress. Bioturbators had a higher median longevity than suspension feeders. Trawling, in particular by gears that penetrate the seabed >2 cm, shifted the community toward shorter-lived species. Changes from bottom trawling were highest in habitats with many long-lived species (hence increasing with gravel content, decreasing with mud content). Benthic communities in high shear stress habitats were less affected by bottom trawling. Using these relationships, we predicted the sensitivity of the benthic community from bottom trawling impact at large spatial scale (the North Sea). We derived different benthic sensitivity metrics that provide a basis to estimate indicators of trawling impact on a continuous scale for the total community and specific functional groups. In combination with high resolution data of trawling pressure, our approach can be used to monitor and assess trawling impact and seabed status at the scale of the region or broadscale habitat and to compare the environmental impact of bottom-contacting fishing gears across fisheries.


Subject(s)
Ecosystem , Fisheries , Invertebrates/physiology , Animals , Biomass , Longevity , North Sea
9.
PLoS One ; 13(1): e0190015, 2018.
Article in English | MEDLINE | ID: mdl-29293547

ABSTRACT

The possible impacts of the European Commission's proposed North Sea Multi-Annual Plan are evaluated in terms of its likely outcomes to achieve management objectives for fishing pressure, species' biomass, fishery yield, the landed value of key species and ecosystem objectives. The method applies management strategy evaluation procedures that employ an ecosystem model of the North Sea and its fisheries as the operating model. Taking five key dimensions of the proposed plan, it identifies those areas that are key to its successful performance. Overwhelmingly, choices in the options for the implementation of regulatory measures on discarding practices outweigh the effects of options related to fishing within ranges associated with 'pretty good yield', the way that biomass conservation safeguard mechanisms are applied and the timeframe for achieving fishing mortality targets. The impact of safeguard options and ranges in fishing mortality become important only when stock biomass is close to its reference points. The fifth dimension-taking into account wider conservation and ecosystem objectives-reveals that discard policy has a big impact on conservation species, but also that the type of harvest control rule can play an important role in limiting risks to stocks by 'applying the brakes' early. The consequences to fisheries however is heightened risk to their viability, thus exposing the sustainability trade-offs faced with balancing societal pressures for blue growth and enhanced conservation. It also reveals the wider ecosystem impacts that emphasise the connectivity between the demersal and pelagic realms, and thus, the importance of not treating the demersal NSMAP in isolation from other management plans. When stocks are below their biomass reference points, low F strategies lead to better long term economic performance, but for stocks consistently above biomass reference points, high F strategies lead to higher long term value. Nephrops and whiting often show contradictory responses to the strategies because changes in their predators abundance affects their abundance and success of their fisheries.


Subject(s)
Ecology , Fisheries , Animals , Biomass , Conservation of Natural Resources , North Sea
10.
Sci Rep ; 7: 43695, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28255165

ABSTRACT

Consensus has been reached that global biodiversity loss impairs ecosystem functioning and the sustainability of services beneficial to humanity. However, the ecosystem consequences of extinction in natural communities are moderated by compensatory species dynamics, yet these processes are rarely accounted for in impact assessments and seldom considered in conservation programmes. Here, we use marine invertebrate communities to parameterise numerical models of sediment bioturbation - a key mediator of biogeochemical cycling - to determine whether post-extinction compensatory mechanisms alter biodiversity-ecosystem function relations following non-random extinctions. We find that compensatory dynamics lead to trajectories of sediment mixing that diverge from those without compensation, and that the form, magnitude and variance of each probabilistic distribution is highly influenced by the type of compensation and the functional composition of surviving species. Our findings indicate that the generalized biodiversity-function relation curve, as derived from multiple empirical investigations of random species loss, is unlikely to yield representative predictions for ecosystem properties in natural systems because the influence of post-extinction community dynamics are under-represented. Recognition of this problem is fundamental to management and conservation efforts, and will be necessary to ensure future plans and adaptation strategies minimize the adverse impacts of the biodiversity crisis.


Subject(s)
Biodiversity , Ecosystem , Extinction, Biological , Animals , Invertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...