Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38475479

ABSTRACT

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a pest that reduces the productivity of small fruits. Entomopathogenic nematodes (EPNs) and chemical insecticides can suppress this pest, but the compatibility of the two approaches together requires further examination. This laboratory study evaluated the compatibility of Steinernema brazilense IBCBn 06, S. carpocapsae IBCBn 02, Heterorhabditis amazonensis IBCBn 24, and H. bacteriophora HB with ten chemical insecticides registered for managing D. suzukii pupae. In the first study, most insecticides at the recommended rate did not reduce the viability (% of living infective juveniles (IJs)) of S. braziliense and both Heterorhabditis species. The viability of S. carpocapsae was lowered by exposure to spinetoram, malathion, abamectin, azadirachtin, deltamethrin, lambda-cyhalothrin, malathion, and spinetoram after 48 h. During infectivity bioassays, phosmet was compatible with all the EPNs, causing minimal changes in infectivity (% pupal mortality) and efficiency relative to EPN-only controls, whereas lambda-cyhalothrin generally reduced infectivity of EPNs on D. suzukii pupae the most, with a 53, 75, 57, and 13% reduction in infectivity efficiency among H. bacteriophora, H. amazonensis, S. carpocapsae, and S. brazilense, respectively. The second study compared pupal mortality caused by the two most compatible nematode species and five insecticides in various combinations. Both Heterorhabditis species caused 78-79% mortality among D. suzukii pupae when used alone, and were tested in combination with spinetoram, malathion, azadirachtin, phosmet, or novaluron at a one-quarter rate. Notably, H. bacteriophora caused 79% mortality on D. suzukii pupae when used alone, and 89% mortality when combined with spinetoram, showing an additive effect. Novaluron drastically reduced the number of progeny IJs when combined with H. amazonensis by 270 IJs and H. bacteriophora by 218. Any adult flies that emerged from EPN-insecticide-treated pupae had a shorter lifespan than from untreated pupae. The combined use of Heterorhabditis and compatible chemical insecticides was promising, except for novaluron.

3.
Neotrop Entomol ; 53(2): 225-235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175394

ABSTRACT

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), world-renowned as spotted-wing drosophila, is an invasive pest mainly affecting healthy, soft and stone fruit crops throughout Argentinian fruit-growing regions. Natural environments overgrown by exotic feral host plants apparently favour D. suzukii proliferation. This is common in the subtropical northwestern Argentina's berry-producing region. An assemblage of resident parasitoid species has been associated with D. suzukii in crop and non-crop areas of Tucumán, the Argentina's leading berries producer and exporter. Consequently, the hypothesis that the combined action of two pupal parasitoid species, Pachycrepoideus vindemiae Rondani (Hymenoptera: Pteromalidae) and Trichopria anastrephae Lima (Hymenoptera: Diapriidae), occurring in non-crop fruit areas, has a significant impact on D. suzukii natural regulation in such invaded habitats was tested. A survey of D. suzukii puparia from both feral peach [Prunus persica (L.) Batsch] (Rosaceae) and guava (Psydium guajava L.) (Myrtaceae) fallen fruits and soil surrounding them was performed in a wilderness area of Tucumán. Abundance of D. suzukii and associated parasitoids, and parasitism levels were assessed. Whole of 3437 D. suzukii puparia were recovered; 78% and 22% were surveyed from fruits and soil underneath the fruit, respectively. Tested fruits are important D. suzukii multiplying hosts. Both P. vindemiae and T. anastrephae accounted for 99.8% of total parasitoid individuals. Pupal parasitoids contribute to the D. suzukii natural mortality, as they killed a quarter of all puparia. Mostly T. anastrephae foraged on host puparia located in the fruit and P. vindemiae in both microhabitats. This information supports an augmentative biological control strategy in non-crop areas.


Subject(s)
Drosophila , Hymenoptera , Humans , Animals , Fruit , Pupa , Incidence , Soil , Insect Control
4.
Neotrop Entomol ; 53(2): 200-215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228819

ABSTRACT

The Southeast Asian-native Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), also known as "spotted-wing Drosophila," is one of the most globally invasive agricultural species. Although D. suzukii is a pest spread throughout all the Argentinian fruit-growing regions, few information has been published on its impact on local fruit production. Parasitoid species associated with D. suzukii in Argentina belong to Pteromalidae (Chalcidoidea), Diapriidae (Diaprioidea), both attacking host pupae, and Figitidae (Cynipoidea), which attack host larvae. Nine Eucoilinae (Figitidae) species, belonging to Dicerataspis, Dieucoila, Euxestophaga, Ganaspis, Hexacola, and Leptopilina genera, have been associated with D. suzukii in Argentina. Ceratitis capitata (Wiedemann), commonly known as "medfly," is native to Africa and has a worldwide distribution, covering many tropical, subtropical, and temperate regions. In Argentina, C. capitata has been associated with several native hymenopterous parasitoids belonging to Braconidae (Ichneumonioidea), Eulophidae (Chalcidoidea), Pteromalidae, Diapriidae, and Figitidae families. Only two eucoline species, Ganaspis pelleranoi (Brèthes) and Leptopilina haywardi (Blanchard) have been related to medfly in Argentina. We report new trophic associations between the parasitoids Dicerataspis grenadensis Ashmead and Leptopilina boulardi (Barbotin, Carton and Kelner-Pillault) and D. suzukii, and between the parasitoid Odontosema albinerve Kieffer and C. capitata, after surveys conducted in Tucumán, northwestern Argentina. An annotated checklist and a taxonomic key of Eucoilinae associated with both invasive pests, in Argentina, are also provided.


Subject(s)
Ceratitis capitata , Hymenoptera , Tephritidae , Humans , Animals , Drosophila , Hymenoptera/physiology , Argentina , Introduced Species
5.
Insects ; 15(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38249067

ABSTRACT

Understanding the seasonal dynamics inherent to non-crop host-fruit fly-parasitoid interactions is vitally important for implementing eco-friendly pest control strategies. This study assessed the abundance and seasonal infestation levels of three pest fly species, Ceratitis capitata (Wiedemann), Anastrepha fraterculus (Wiedemann), Drosophila suzukii (Matsumura), as well as the related saprophytic drosophilids, and their natural parasitism in a disturbed wild habitat characterized by non-crop hosts in northwestern Argentina over 40 months. Juglans australis Griseb (walnut), Citrus aurantium L. (sour orange), Eriobotrya japonica (Thunb.) Lindley (loquat), Prunus persica (L.) Batsch (peach), and Psydium guajava L. (guava) were sampled throughout their fruiting seasons. Fruits were collected from both the tree canopies and the ground. The most abundant puparia was A. fraterculus, followed by C. capitata and D. suzukii. Drosophila species from the D. melanogaster group were highly abundant only in fallen fruits. Spatiotemporal overlaps of different host fruit availability provided suitable sources for pest proliferation throughout the year. The populations of both invasive pests peaked from December to January, and were related to the highest ripe peach availability, whereas the A. fraterculus population peaked from February to April, overlapping with the guava fruiting period. The three pest fly species were parasitized mainly by three generalist resident parasitoids, which are potential biocontrol agents to use within an integrated pest management approach.

6.
Neotrop Entomol ; 53(2): 236-243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38133734

ABSTRACT

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is an invasive species that causes serious damage to soft-skinned fruits. The use of plant-based biorational insecticides (plant extracts and essential oils) to control this pest has grown extensively. We conducted a systematic review and meta-analysis to examine the current status, trends, and perspectives of these studies, with a focus on the plant families and major compounds used as insecticides to control D. suzukii. The first article in this research field was published in 2015, and there has been exponential growth in subsequent years. Thirty-six botanical families were studied in these articles, with a prevalent interest in Myrtaceae and Lamiaceae plant species. The major constituents of these plant-based biorational molecules belong to monoterpenoids, followed by monoterpenes, benzene derivatives, and others. Geranial was the most frequent major constituent of these plant-based compounds. Our analysis revealed a few crucial consequences of the bias provided by the investigations using plant-based biorational insecticides for controlling D. suzukii. Firstly, there is a major focus on the pest species, with little or no attention paid to undesired effects on non-target beneficial organisms (e.g., pollinator bees, predators; parasitoids) and non-target pests. Secondly, the poor knowledge of how these plant-based biorational insecticides act on target and non-target organisms. Finally, there is a need to assess the efficacy of these substances under field conditions. Thus, attention is needed to address these gaps so that plant-based biorational insecticides can become a viable pest management tool for controlling D. suzukii.


Subject(s)
Insecticides , Myrtaceae , Oils, Volatile , Animals , Drosophila , Pest Control , Fruit , Insect Control
7.
Neotrop Entomol ; 52(6): 986-992, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37495767

ABSTRACT

The invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) was recently recorded in Brazil and constitutes a threat to fruit growing, mainly for small, soft fruits. Recent advances in research on ways of controlling D. suzukii involve the use of entomopathogenic nematodes (EPNs). In this context, the objective of this study was to evaluate the pathogenicity and virulence of four isolates in different concentrations against D. suzukii pupae. The EPN isolates used in trials were Steinernema brazilense IBCBn 06, S. carpocapsae IBCBn 02, Heterorhabditis bacteriophora HB, and H. amazonensis IBCBn 24. Both H. amazonensis IBCBn 24 and H. bacteriophora HB were effective in controlling D. suzukii as they caused a mortality rate of 86.25% and 80.0%, and virulence of 549.75 IJs/pupae and 787.75 IJs/pupae in the concentrations of 1800 IJs/ml and 5400 IJs/ml, respectively. The lowest lethal concentrations (LC50) of juveniles were found in host pupae with 771.63 IJs/ml of H. bacteriophora HB and 1115.49 IJs/ml of H. amazonensis IBCBn 24. Results showed that both EPNs, H. amazonensis IBCBn 24 and H. bacteriophora HB, could be promising eco-friendly biological agents to control D. suzukii.


Subject(s)
Drosophila , Rhabditida , Animals , Larva , Virulence , Brazil , Pest Control, Biological/methods , Pupa
8.
Insects ; 14(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37103202

ABSTRACT

Biological control through the augmentative release of parasitoids is an important complementary tool that may be incorporated into other strategies for the eradication/eco-friendly control of pest fruit flies. However, not much information is available on the effectiveness of fruit fly parasitoids as biocontrol agents in semi-arid and temperate fruit-growing regions. Therefore, this study evaluated the effect of augmentative releases of the larval parasitoid Diachasmimorpha longicaudata (Ashmead) on Ceratitis capitata (Wiedemann) (medfly) populations over two fruit seasons (2013 and 2014) on a 10 ha irrigated fruit farm in San Juan province, central-western Argentina. The parasitoids were mass reared on irradiated medfly larvae of the Vienna-8 temperature-sensitive lethal genetic sexing strain. About 1692 (±108) parasitoids/ha were released per each of the 13 periods throughout each fruit season. Another similar farm was chosen as a control of non-parasitoid release. The numbers of captured adult flies in food-baited traps and of recovered fly puparia from sentinel fruits were considered the main variables to analyze the effect of parasitoid release on fly population suppression using a generalized least squares model. The results showed a significant decrease (p < 0.05) in the medfly population on the parasitoid release farm when compared to the Control farm, demonstrating the effectiveness of augmentative biological control using this exotic parasitoid. Thus, D. longicaudata could be used in combination with other medfly suppression strategies in the fruit production valleys of San Juan.

9.
Insects ; 14(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36975907

ABSTRACT

Understanding the mechanisms associated with the coexistence of competing parasitoid species is critical in approaching any biological control strategy against the globally invasive pest spotted-wing drosophila (=SWD), Drosophila suzukii (Matsumura). This study assessed the coexistence of two resident pupal parasitoids, Trichopria anastrephae Lima and Pachycrepoideus vindemiae Rondani, in SWD-infested fruit, in disturbed wild vegetation areas of Tucumán, northwestern Argentina, based on niche segregation. Drosophilid puparia were collected between December/2016 and April/2017 from three different pupation microhabitats in fallen feral peach and guava. These microhabitats were "inside flesh (mesocarp)", "outside flesh", but associated with the fruit, and "soil", i.e., puparia buried close to fruit. Saprophytic drosophilid puparia (=SD) belonging to the Drosophila melanogaster group and SWD were found in all tested microhabitats. SD predominated in both inside and outside flesh, whereas SWD in soil. Both parasitoids attacked SWD puparia. However, T. anastrephae emerged mainly from SD puparia primarily in the inside flesh, whereas P. vindemiae mostly foraged SWD puparia in less competitive microhabitats, such as in the soil or outside the flesh. Divergence in host choice and spatial patterns of same-resource preferences between both parasitoids may mediate their coexistence in non-crop environments. Given this scenario, both parasitoids have potential as SWD biocontrol agents.

10.
Environ Entomol ; 51(6): 1120-1135, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36287246

ABSTRACT

Ceratitis capitata (Wiedemann) and Drosophila suzukii (Matsumura) are two severe invasive pests widespread in all Argentinean fruit-producing regions. Both coexist with the Neotropical pest Anastrepha fraterculus (Wiedemann) in northern Argentina. The northwestern region shelters major soft fruit and Citrus producing and exporting industries, which are heavily affected by these dipterans. Eco-friendly strategies are under assessment in Argentina. This study mainly assessed D. suzukii, C. capitata, and A. fraterculus temporal abundance variations and their natural parasitism levels on a 1.5-ha-patch of feral peach trees within a disturbed secondary subtropical rainforest of northwestern Argentina. Fly puparia were mainly collected from the soil under fallen peach. Sampling was performed over three peach fruiting seasons. The most abundant pest species was C. capitata. Drosophila suzukii was only found in the last collecting period, but outnumbered A. fraterculus. Natural parasitism distinctly affected the temporal abundance of these dipterans: it significantly depressed C. capitata abundance in last sampling weeks, it did not substantially affect D. suzukii abundance, but it increased synchronously with the increase in the A. fraterculus abundance. Parasitism on C. capitata was mostly exerted by a combination of both a cosmopolitan pupal and a native larval parasitoid, while A. fraterculus was mainly parasitized by two indigenous larval parasitoids. Only three resident pupal parasitoids were associated with D. suzukii, of which the cosmopolitan Pachycrepoideus vindemiae Rondani (Hymenoptera: Pteromalidae) was the most significant. Data on the resident parasitoid impact are relevant for designing biocontrol strategies in noncrop habitats.


Subject(s)
Ceratitis capitata , Hymenoptera , Tephritidae , Animals , Introduced Species , Drosophila , Pupa , Pest Control, Biological
11.
J Econ Entomol ; 115(4): 1008-1023, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35595171

ABSTRACT

Spotted-wing drosophila, Drosophila suzukii Matsumura, was first established in Latin America in Mexico in 2011. The vinegar fly has since been detected in 296 municipalities in Argentina, Brazil, Chile, Mexico, and Uruguay. Drosophila suzukii is polyphagous and is found on 64 host plants in 25 families in Latin America, with most hosts also exotic species. In Latin America, D. suzukii is attacked by 14 species of parasitoid wasps in the families Diapriidae, Figitidae, and Pteromalidae, which are promising native parasitoids for control of the pest. This article analyzes results from studies on monitoring, biological, chemical, and cultural control, and sterile insect techniques to provide a basis for the development of area-wide and sustainable D. suzukii management programs in Latin America. The review examines how D. suzukii has been managed in Latin America and how research conducted in this region can contribute to management of the species in other parts of the world.


Subject(s)
Drosophila , Wasps , Animals , Brazil , Insect Control/methods , Latin America , Mexico
12.
J Econ Entomol ; 115(4): 967-971, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35187578

ABSTRACT

Drosophila suzukii (Matsumura 1931) represents one of the main pests of small fruits. The use of biological agents is very promising for insect control. In the present study, the nematode Steinernema rarum PAM 25 was evaluated for the control of D. suzukii pupae, this species has not been evaluated previously. First, we evaluated the pathogenicity of S. rarum PAM 25 at the concentration of 1,000 infective juveniles (IJs) inoculated into D. suzukii pupae. In the second bioassay, we evaluated the influence of 1,500; 2,000; 2,500; 3,000; 4,000 IJs/ml nematode concentration and temperature on D. suzukii mortality. In the third bioassay, we evaluated the influence of the isolate S. rarum PAM 25 on D. suzukii adult lifespan following pupal infection, using the concentrations with the highest mortality rate of pupae at each temperature as determined in the second experiment. The S. rarum PAM 25 isolate is pathogenic to D. suzukii. The most effective temperature for S. rarum PAM 25 activity was 14°C at a concentration of 4,000 IJs/ml. Adults infected with S. rarum PAM 25 showed a significant reduction in longevity. The results confirmed the potential of S. rarum PAM 25 for the control of D. suzukii.


Subject(s)
Rhabditida , Animals , Drosophila , Insect Control/methods , Longevity , Pupa
13.
Environ Entomol ; 51(2): 370-377, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35149874

ABSTRACT

Land use changes from native vegetation to agriculture, livestock grazing, and urban development are among the main problems related to biodiversity loss worldwide. In this paper we evaluate how land use changes (eucalypt plantation and pasture) affect the richness and assemblage of wasps (Braconidae, Ichneumonidae, Pompilidae, and Vespidae), in comparison with nearby areas with native vegetation in the Cerrado. Specimens were collected at six points, with two Malaise traps at each location. The collections were performed monthly for 10 d, for 12 mo. A total of 773 hymenopterans of the selected groups were collected, representing 253 species or morphospecies. Richness of the families Ichneumonidae and Pompilidae between the areas did not present significant differences. For the families Braconidae and Vespidae, the richness was greater in the eucalypt plantation and pasture areas compared to the native area. Species composition in the native habitat was different from either of the managed habitats in the studied environment. Furthermore, the composition of wasps in native areas varied less throughout the sampling campaigns when compared with the pasture and eucalyptus sites. In native areas, 85 exclusive morphospecies were found. Thus, changes in land use may cause changes in the composition of wasp species, since areas with native vegetation presented more heterogeneous and stable environments than the other land uses. The maintenance of native areas, even if close to planted forest and/or pasture areas, could be the best way to combine forest productivity with biodiversity conservation.


Subject(s)
Wasps , Agriculture , Animals , Biodiversity , Ecosystem , Forests , Humans
14.
J Econ Entomol ; 114(1): 248-256, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33399211

ABSTRACT

The Mediterranean fruit fly Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) is among the main pests of fruit crops worldwide. Biological control using entomopathogenic nematodes (EPNs) may be an alternative to suppress populations of this pest. Thus, the aim of this study was to evaluate the pathogenicity and virulence of six EPN isolates (Heterorhabditis bacteriophora HB, H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47, and S. brazilense IBCB-n06) against C. capitata pupae. The compatibility of EPNs with different chemical insecticides that are registered for management of C. capitata was also assessed. Isolates of H. bacteriophora HB and S. brazilense IBCB-n06 at a concentration of 1,000 infective juveniles (IJ)/ml proved to be most pathogenic to C. capitata (70 and 80% mortality, respectively). In contrast, the isolates H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47 provided pupal mortality of less than 60%. Bioassays to determine lethal concentrations indicated that concentrations of 600 IJ/ml (H. bacteriophora HB) and 1,000 IJ/ml (S. brazilense IBCB-n06) showed the highest virulence against C. capitata pupae. In contrast, the highest numbers of IJs emerged at concentrations of 1,200 and 200 IJ/ml. In compatibility bioassays, malathion, spinetoram, phosmet, acetamiprid, and novaluron were considered compatible with and harmless (Class 1) to H. bacteriophora HB and S. brazilense IBCB-n06, according to IOBC/WPRS. This information is important for implementing integrated management programs for C. capitata, using biological control with EPNs, whether alone or in combination with chemical insecticides.


Subject(s)
Ceratitis capitata , Insecticides , Rhabditida , Tephritidae , Animals , Pest Control, Biological , Pupa
15.
Biosci. j. (Online) ; 37: e37047, Jan.-Dec. 2021. graf, tab
Article in English | LILACS | ID: biblio-1358948

ABSTRACT

Anastrepha fraterculus (Wiedemann) is one of the main pests of fruit farming, and entomopathogenic nematodes (EPNs) represent an important control tool of this species. Thus, the objective of this study was to evaluate the biological activity of different isolate against A. fraterculus larvae and adults. Bioassays were performed using a suspension of three isolates of Heterorhabditis amazonensis IBCB 24, Steinernema carpocapsae IBCB 02 and Steinernema feltiae IBCB 47 at six concentrations (control - without nematodes), 50, 150, 300, 500, 1000 and 1500 infective juveniles (IJs)/mL of water per 3º instar larvae. It was verified the susceptibility of larvae of A. fraterculus to isolates of EPNs and a significant increase of the pupal mortality in the function of the concentration of IJs inoculated by larva (above 75%). After the dissection of pupae and adults of A. fraterculus from infected larvae, the concentration of 1500 IJs/mL of EPNs provided the highest rate of multiplication of IJs by insect, equating to maximum concentration tested 1500 IJs/mL. Adults of A. fraterculus from larvae infected with EPNs longevity of five days, being less than adults from uninfected larvae by IJs (135 days). H. amazonensis IBCB 24, S. carpocapsae IBCB 02, and S. feltiae IBCB 47 proved to be promising as agents of biological control of A. fraterculus.


Subject(s)
Pest Control, Biological/methods , Tephritidae , Nematoda
16.
Sci Rep ; 10(1): 4856, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184426

ABSTRACT

Over the past few years, the use of RNA interference (RNAi) for insect pest management has attracted considerable interest in academia and industry as a pest-specific and environment-friendly strategy for pest control. For the success of this technique, the presence of core RNAi genes and a functional silencing machinery is essential. Therefore, the aim of this study was to test whether the Neotropical brown stinkbug Euschistus heros has the main RNAi core genes and whether the supply of dsRNA could generate an efficient gene silencing response. To do this, total mRNA of all developmental stages was sequenced on an Illumina platform, followed by a de novo assembly, gene annotation and RNAi-related gene identification. Once RNAi-related genes were identified, nuclease activities in hemolymph were investigated through an ex vivo assay. To test the functionality of the siRNA machinery, E. heros adults were microinjected with ~28 ng per mg of insect of a dsRNA targeting the V-ATPase-A gene. Mortality, relative transcript levels of V-ATPase-A, and the expression of the genes involved in the siRNA machinery, Dicer-2 (DCR-2) and Argonaute 2 (AGO-2), were analyzed. Transcriptome sequencing generated more than 126 million sequenced reads, and these were annotated in approximately 80,000 contigs. The search of RNAi-related genes resulted in 47 genes involved in the three major RNAi pathways, with the absence of sid-like homologous. Although ex vivo incubation of dsRNA in E. heros hemolymph showed rapid degradation, there was 35% mortality at 4 days after treatment and a significant reduction in V-ATPase-A gene expression. These results indicated that although sid-like genes are lacking, the dsRNA uptake mechanism was very efficient. Also, 2-fold and 4-fold overexpression of DCR-2 and AGO-2, respectively, after dsRNA supply indicated the activation of the siRNA machinery. Consequently, E. heros has proven to be sensitive to RNAi upon injection of dsRNA into its hemocoel. We believe that this finding together with a publically available transcriptome and the validation of a responsive RNAi machinery provide a starting point for future field applications against one of the most important soybean pests in South America.


Subject(s)
Gene Expression Profiling/veterinary , Hemiptera/growth & development , RNA, Small Interfering/genetics , Vacuolar Proton-Translocating ATPases/genetics , Animals , Gene Expression Regulation, Developmental , Hemiptera/genetics , High-Throughput Nucleotide Sequencing/veterinary , Insect Control , Insect Proteins/genetics , Molecular Sequence Annotation , Sequence Analysis, RNA/veterinary , South America
17.
J Econ Entomol ; 113(1): 81-87, 2020 02 08.
Article in English | MEDLINE | ID: mdl-31639194

ABSTRACT

Spotted-wing Drosophila, Drosophila suzukii (Matsumura, 1931), is an economic pest of thin-skinned fruit crops. Its control has commonly been carried out through chemical methods. However, given the need to develop safer and environmentally friendly management alternatives, the pupal endoparasitoid Trichopria anastrephae Lima stands out as a potential biological control agent. However, the lack of information on the mass rearing of this parasitoid limits its use. Thus, the objective of our study was to provide information that is useful for rearing T. anastrephae using D. suzukii as a host. The effects of pupal age, exposure time, and pupal density on the parasitism rate were examined, as was the effect of honey provision for extending adult parasitoid longevity. Exposing 15 12-h-old pupae per female for 24 h resulted in higher parasitism rates and a greater number of emerged parasitoids. Males and females of T. anastrephae fed with pure honey (100%) or honey diluted to 50% in water lived longer compared to those fed 10% honey, no food, or only water.


Subject(s)
Hymenoptera , Animals , Brazil , Drosophila , Female , Longevity , Male , Pupa
18.
Arq. Inst. Biol ; 87: 0882018, 2020. tab, mapas
Article in English | LILACS, VETINDEX | ID: biblio-1096040

ABSTRACT

Anastrepha grandis is one of the main pests related to Cucurbitaceae in South and Central America. This study discusses the impact of temperature increase on the number of generations of A. grandis, whose distribution could be aggravated due to temperature increase. Climatic variations were analyzed for reference scenarios obtained from 1961‒1990 and of A2 and B1 climatic change scenarios of the Intergovernmental Panel on Climate Change, in which a less pessimistic scenario (B1) and a more pessimistic scenario (A2) were found. In relation to the reference scenarios, in colder seasons, the southern and southeastern regions are inadequate for the development of A. grandis, presenting one generation at most. In other regions of Brazil, where temperatures are higher throughout the year, the number of generations is at least two, and there is no variation from one climatic season to another. When analyzing the temperature increase, in a more pessimistic scenario (A2), there is a considerable variation in the number of generations, if we take into account three future climate scenarios in which A. grandis practically doubles the number of generations. In relation to a less pessimistic scenario (B1), there is a smaller variation in the number of generations, mainly in the southern region of the country. This variation is more accentuated in southeastern Brazil due to the temperature increase, in which the pest's number of generations doubles even in colder seasons.(AU)


Anastrepha grandis é uma das principais pragas relacionadas à Cucurbitaceae nas Américas do Sul e Central. O presente trabalho teve como objetivo conhecer o impacto do aumento da temperatura no número de gerações de A. grandis, cuja distribuição poderá ser agravada devido ao aumento da temperatura. Essas variações climatológicas foram analisadas para cenários de referência obtidos de 1961‒1990 e nos cenários de mudanças climáticas A2 e B1 do Painel Intergovernamental de Mudanças Climáticas, onde encontramos um cenário menos pessimista (B1) e um mais pessimista (A2). Em relação ao período de referência é possível observar que, nas estações mais frias, as regiões Sul e Sudeste mostram-se inadequadas para o desenvolvimento de A. grandis, apresentando no máximo uma geração, enquanto nas estações mais quentes o inseto pode chegar a duas gerações. Nas demais regiões do país, onde as temperaturas apresentam-se mais elevadas durante todo o ano, o número de gerações é de no mínimo duas e não há variação de uma estação climática para outra. Quando analisado o aumento da temperatura, em um cenário mais pessimista (A2), é possível observar uma variação considerável no número de gerações nos três cenários climáticos futuros, podendo A. grandis dobrar o número de gerações. Em relação a um cenário menos pessimista (B1), é evidente uma variação menor no número de gerações, principalmente na região Sul do país, enquanto que na região Sudeste essa variação já é mais acentuada devido ao aumento da temperatura, podendo dobrar o número de gerações mesmo nas estações mais frias.(AU)


Subject(s)
Climate Change , Cucurbitaceae , Tephritidae , Abiotic Factors
19.
Arq. Inst. Biol ; 87: e0432018, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1118052

ABSTRACT

The spotted-wing drosophila, Drosophila suzukii Matsumura, is considered the main insect pest of small fruit in the world. Identifying susceptible hosts is essential to develop management strategies. The aim of this study was to verify the level of D. suzukii infestation in blackberry, blueberry, strawberry, cattley guava and Surinam cherry fruits cultivated in the southern region in Brazil, and to determine the infestation index (II) per fruit. The studies were carried out during two harvests (2015/16 and 2016/17) in three areas with organic cultivation of small fruit. The highest level of D. suzukii natural infestation was observed in blackberry (40 to 65% infestation), and strawberry (approximately 30% infestation) fruits. In contrast, blueberries were less preferred (< 7% infestation). For native fruit of the region (cattley guava and Surinam cherry), it was also verified infestation of the fly, demonstrating they are hosts for multiplication in the off-season periods of the other crops. In relation to II, blackberry and Surinam cherry provided a higher average number of insects per gram of fruit (≈ 1.6 adults of D. suzukii). In contrast, blueberries and cattley guava had the lowest insect ratio per gram of fruit (≈ 0.7 adults per gram). The period between late spring to mid-autumn was considered ideal for the pest occurrence in the field. The knowledge of natural infestation levels is essential for understanding the behavior of the pest in the field, which will assist in the design of management strategies.(AU)


A drosófila-da-asa-manchada, Drosophila suzukii Matsumura, é considerada o principal inseto-praga de pequenos frutos no mundo. A identificação de hospedeiros suscetíveis é essencial para o desenvolvimento de estratégias de manejo. O objetivo deste estudo foi verificar o nível de infestação de D. suzukii em frutos de amoreira-preta, mirtileiro, morangueiro, araçazeiro e pitangueira cultivados na região no sul do Brasil e determinar os índices de infestação (II) por fruto. Os estudos foram realizados durante duas safras (2015/16 e 2016/17) em três áreas com cultivo orgânico de pequenas frutas. O maior nível de infestação natural de D. suzukii foi observado em amora-preta (40 a 65% de infestação) e morango (aproximadamente 30% de infestação). Em contraste, o mirtilo foi menos preferido (< 7% de infestação). Para as frutas nativas da região (araçá e pitanga), também ocorreu infestação da mosca, demonstrando serem hospedeiros potenciais para a multiplicação da praga nos períodos de entressafras. Em relação ao II, amoras e pitangas proporcionaram um maior número médio de insetos por grama de fruto (≈ 1,6 adultos de D. suzukii). Por outro lado, mirtilos e araçás apresentaram a menor relação de insetos emergidos por gramas de frutos (≈ 0,7 adultos por grama). O período entre final da primavera até meados do outono foi considerado ideal para a ocorrência da praga no campo. O conhecimento dos níveis de infestação natural é fundamental para o entendimento do comportamento da praga no campo, o que auxiliará no delineamento de estratégias de manejo.(AU)


Subject(s)
Drosophila , Fruit/parasitology , Seasons , Brazil , Agricultural Pests , Vaccinium myrtillus , Morus , Fragaria , Introduced Species , Eugenia
20.
Biosci. j. (Online) ; 35(4): 1220-1226, july/aug. 2019. tab
Article in English | LILACS | ID: biblio-1048867

ABSTRACT

The State ofRio Grande do Sul is a major producer of grapes in Brazil, highlighting the Serra Gaúcha as the main producing region. In the pursuit of good quality in grapes it is essential the control of pests, especially insects. This study highlights the incidence of wasps, which cause serious damage at harvest time. This study aimed to characterize the community of social wasps (Hymenoptera, Vespidae) through faunal analysis and to examine the relationship of these insects with injuries to the grape berries in vineyards of Bento Gonçalves, Rio Grande do Sul State. Therefore, active search were made in January and February 2014, followed by analysis of frequency, constancy, abundance, dominance and diversity. Ten species of wasps were able to use grape berries as food. The two dominant species were Polybia ignobilis and P. minarum, however, Synoeca cyanea has greater ability to break the intact berries. Other three species, Polistes cavapytiformis, P. versicolor and Brachygastra lecheguana, were also able to break the skin of grapes, but of damaged berries.


O Rio Grande do Sul é o maior produtor de uvas no Brasil, destacando-se a Serra Gaúcha como principal região produtora. Na busca de qualidade das uvas é fundamental o controle de pragas, especialmente insetos. Este trabalho identifica a incidência de vespas que acarretam graves danos na época de colheita. A pesquisa foi conduzida com o objetivo caracterizar a assembleia de vespas sociais (Hymenoptera, Vespidae) através de análise faunística e a relação destas com injúrias as bagas, em parreirais do município de Bento Gonçalves, Rio Grande do Sul. Para tanto, foram realizadas coletas ativas nos meses de janeiro efevereiro de 2014, realizando-se análise de frequência, constância, abundância, dominância e diversidade da comunidade. Foram identificadas 10 espécies de vespas capazes de utilizar as bagas de uva como alimento. As espécies predominantes foram Polybia ignobilis e P. minarum, todavia, Synoeca cyanea apresenta maior capacidade de rompimento de bagas íntegras. P. cavapytiformis, P. versicolor e Brachygastra lecheguanatambém foram capazes de abrir a casca dos frutos em bagas anteriormente danificadas.


Subject(s)
Wasps , Pest Control , Vitis
SELECTION OF CITATIONS
SEARCH DETAIL
...