Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 16(8): 12156-12173, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35943045

ABSTRACT

Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-ß-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-ß-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 µmol gFW-1) above control plant levels (0.03441 µmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.


Subject(s)
Nanostructures , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Hydrogen Peroxide/metabolism , Chloroplasts/metabolism , Photosynthesis , Nanostructures/chemistry , Plants , Plant Leaves/chemistry , Agrochemicals/analysis , Agrochemicals/metabolism , Agrochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL