Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(10)2021 09 27.
Article in English | MEDLINE | ID: mdl-34568930

ABSTRACT

The alkylphosphocholine (APC) class of antineoplastic and antiprotozoal drugs, such as edelfosine and miltefosine, are structural mimics of lyso-phosphatidylcholine (lyso-PC), and are inhibitory to the yeast Saccharomyces cerevisiae at low micromolar concentrations. Cytotoxic effects related to inhibition of phospholipid synthesis, induction of an unfolded protein response, inhibition of oxidative phosphorylation, and disruption of lipid rafts have been attributed to members of this drug class, however, the molecular mechanisms of action of these drugs remain incompletely understood. Cytostatic and cytotoxic effects of the APCs exhibit variability with regard to chemical structure, leading to differences in effectiveness against different organisms or cell types. We now report the comprehensive identification of S. cerevisiae titratable-essential gene and haploid nonessential gene deletion mutants that are resistant to the APC drug miltefosine (hexadecyl-O-phosphocholine). Fifty-eight strains out of ∼5600 tested displayed robust and reproducible resistance to miltefosine. This gene set was heavily enriched in functions associated with vesicular transport steps, especially those involving endocytosis and retrograde transport of endosome derived vesicles to the Golgi or vacuole, suggesting a role for these trafficking pathways in transport of miltefosine to potential sites of action in the endoplasmic reticulum and mitochondrion. In addition, we identified mutants with defects in phosphatidylinositol-4-phosphate synthesis (TetO::STT4) and hydrolysis (sac1Δ), an oxysterol binding protein homolog (osh2Δ), a number of ER-resident proteins, and multiple components of the eisosome. These findings suggest that ER-plasma membrane contact sites and retrograde vesicle transport are involved in the interorganelle transport of lyso-PtdCho and related lyso-phospholipid-like analogs to their intracellular sites of cytotoxic activity.


Subject(s)
Antineoplastic Agents , Pharmaceutical Preparations , Saccharomyces cerevisiae Proteins , 1-Phosphatidylinositol 4-Kinase , Antineoplastic Agents/pharmacology , Genomics , Golgi Apparatus , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
2.
J Am Heart Assoc ; 9(5): e015111, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32098556

ABSTRACT

Background Pediatric-onset restrictive cardiomyopathy (RCM) is associated with high mortality, but underlying mechanisms of disease are under investigated. RCM-associated diastolic dysfunction secondary to variants in TNNT2-encoded cardiac troponin T (TNNT2) is poorly described. Methods and Results Genetic analysis of a proband and kindred with RCM identified TNNT2-R94C, which cosegregated in a family with 2 generations of RCM, ventricular arrhythmias, and sudden death. TNNT2-R94C was absent among large, population-based cohorts Genome Aggregation Database (gnomAD) and predicted to be pathologic by in silico modeling. Biophysical experiments using recombinant human TNNT2-R94C demonstrated impaired cardiac regulation at the molecular level attributed to reduced calcium-dependent blocking of myosin's interaction with the thin filament. Computational modeling predicted a shift in the force-calcium curve for the R94C mutant toward submaximal calcium activation compared within the wild type, suggesting low levels of muscle activation even at resting calcium concentrations and hypercontractility following activation by calcium. Conclusions The pathogenic TNNT2-R94C variant activates thin-filament-mediated sarcomeric contraction at submaximal calcium concentrations, likely resulting in increased muscle tension during diastole and hypercontractility during systole. This describes the proximal biophysical mechanism for development of RCM in this family.


Subject(s)
Cardiomyopathy, Restrictive/genetics , Cardiomyopathy, Restrictive/physiopathology , Death, Sudden, Cardiac/etiology , Genetic Predisposition to Disease/genetics , Troponin T/genetics , Adult , Cardiomyopathy, Restrictive/diagnosis , Child , Child, Preschool , Cytoskeleton/physiology , Diastole/physiology , Female , Humans , Male , Myocardial Contraction/physiology , Sarcomeres/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...