Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
iScience ; 27(8): 110470, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39148710

ABSTRACT

Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.

2.
Dermatol Pract Concept ; 14(3)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39122530

ABSTRACT

INTRODUCTION: Acne keloidalis nuchae (AKN) is a primary cicatricial alopecia with mixed infiltrate. It is more common in Africans or persons of African descent. OBJECTIVES: Our objective was to describe the epidemiology and clinical and trichoscopic presentations of AKN in a large series of Hispanic patients. METHODS: This was a retrospective study from 10 different dermatological centers in Argentina, Colombia, Mexico, and Peru. Patients with a clinical diagnosis of AKN treated by 12 dermatologists experienced in trichology from 2018 to 2022 were included. The Umar classification system was used to determine severity. RESULTS: We identified 142 patients with AKN: 98% were male (n=140) with a mean age of 32 years; 108 patients had a previous history of trauma to the nuchal area (76%, P < 0.001); and 48 were positive for a history of acne (33.8%, P = 0.021). Patients with >50 months of evolution were mainly classified in classes III and IV compared to patients with an evolution of <50 months (30%, n=9 vs. 14%, n=15; P = 0.019; respectively). CONCLUSION: AKN should be considered in the differential diagnosis in the Hispanic population. Advanced stages of the disease are correlated with chronic evolution.

3.
Cell Death Dis ; 15(8): 575, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117607

ABSTRACT

Adverse intrauterine conditions may cause fetal growth restriction (FGR), a pregnancy complication frequently linked to perinatal morbidity and mortality. Although many studies have focused on FGR, the pathophysiological processes underlying this disorder are complex and incompletely understood. We have recently determined that galectin-3 (gal-3), a ß-galactoside-binding protein, regulates pregnancy-associated processes, including uterine receptibility, maternal vascular adaptation and placentation. Because gal-3 is expressed at both sides of the maternal-fetal interface, we unraveled the contribution of maternal- and paternal-derived gal-3 on fetal-placental development in the prenatal window and its effects on the post-natal period. Deficiency of maternal gal-3 induced maternal gut microbiome dysbiosis, resulting in a sex-specific fetal growth restriction mainly observed in female fetuses and offspring. In addition, poor placental metabolic adaptions (characterized by decreased trophoblast glycogen content and insulin-like growth factor 2 (Igf2) gene hypomethylation) were only associated with a lack of maternal-derived gal-3. Paternal gal-3 deficiency caused compromised vascularization in the placental labyrinth without affecting fetal growth trajectory. Thus, maternal-derived gal-3 may play a key role in fetal-placental development through the gut-placenta axis.


Subject(s)
Fetal Growth Retardation , Galectin 3 , Placenta , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Pregnancy , Female , Animals , Placenta/metabolism , Mice , Galectin 3/metabolism , Galectin 3/deficiency , Galectin 3/genetics , Male , Gastrointestinal Microbiome , Mice, Inbred C57BL , Humans , Fetal Development , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/deficiency , Trophoblasts/metabolism
4.
Stem Cell Res Ther ; 15(1): 208, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992782

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) tropism for tumours allows their use as carriers of antitumoural factors and in vitro transcribed mRNA (IVT mRNA) is a promising tool for effective transient expression without insertional mutagenesis risk. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with antitumor properties by stimulating the specific immune response. The aim of this work was to generate modified MSCs by IVT mRNA transfection to overexpress GM-CSF and determine their therapeutic effect alone or in combination with doxorubicin (Dox) in a murine model of hepatocellular carcinoma (HCC). METHODS: DsRed or GM-CSF IVT mRNAs were generated from a cDNA template designed with specific primers followed by reverse transcription. Lipofectamine was used to transfect MSCs with DsRed (MSC/DsRed) or GM-CSF IVT mRNA (MSC/GM-CSF). Gene expression and cell surface markers were determined by flow cytometry. GM-CSF secretion was determined by ELISA. For in vitro experiments, the J774 macrophage line and bone marrow monocytes from mice were used to test GM-CSF function. An HCC model was developed by subcutaneous inoculation (s.c.) of Hepa129 cells into C3H/HeN mice. After s.c. injection of MSC/GM-CSF, Dox, or their combination, tumour size and mouse survival were evaluated. Tumour samples were collected for mRNA analysis and flow cytometry. RESULTS: DsRed expression by MSCs was observed from 2 h to 15 days after IVT mRNA transfection. Tumour growth remained unaltered after the administration of DsRed-expressing MSCs in a murine model of HCC and MSCs expressing GM-CSF maintained their phenotypic characteristic and migration capability. GM-CSF secreted by modified MSCs induced the differentiation of murine monocytes to dendritic cells and promoted a proinflammatory phenotype in the J774 macrophage cell line. In vivo, MSC/GM-CSF in combination with Dox strongly reduced HCC tumour growth in C3H/HeN mice and extended mouse survival in comparison with individual treatments. In addition, the tumours in the MSC/GM-CSF + Dox treated group exhibited elevated expression of proinflammatory genes and increased infiltration of CD8 + T cells and macrophages. CONCLUSIONS: Our results showed that IVT mRNA transfection is a suitable strategy for obtaining modified MSCs for therapeutic purposes. MSC/GM-CSF in combination with low doses of Dox led to a synergistic effect by increasing the proinflammatory tumour microenvironment, enhancing the antitumoural response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms , Mesenchymal Stem Cells , RNA, Messenger , Animals , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Mesenchymal Stem Cells/metabolism , Mice , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Cell Line, Tumor , Mesenchymal Stem Cell Transplantation/methods , Humans , Mice, Inbred C3H , Transfection
5.
J Reprod Immunol ; 164: 104284, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908337

ABSTRACT

Abnormal placental angiogenesis during gestation resulting from high levels of anti-angiogenic factors, soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin, has been implicated in the progression of preeclampsia (PE). This heterogeneous syndrome (defined by hypertension with or without proteinuria after 20 weeks of pregnancy) remains a major global health burden with long-term consequences for both mothers and child. Previously, we showed that in vivo systemic human (hsFLT1) overexpression led to reduced placental efficiency and PE-like syndrome in mice. Galectins (gal-1, -3 and -9) are critical determinants of vascular adaptation to pregnancy and dysregulation of the galectin-glycan circuits is associated with the development of this life-threatening disease. In this study, we assessed the galectin-glycan networks at the maternal-fetal interface associated with the hsFLT1-induced PE in mice. We observed an increase on the maternal gal-1 expression in the decidua and junctional zone layers of the placenta derived from hs FLT1high pregnancies. In contrast, placental gal-3 and gal-9 expression were not sensitive to the hsFLT1 overexpression. In addition, O- and N-linked glycan expression, poly-LacNAc sequences and terminal sialylation were down-regulated in hsFLT1 high placentas. Thus, the gal-1-glycan axis appear to play an important role counteracting the anti-angiogenic status caused by sFLT1, becoming critical for vascular adaptation at the maternal-fetal interface.


Subject(s)
Placenta , Pre-Eclampsia , Vascular Endothelial Growth Factor Receptor-1 , Pregnancy , Female , Animals , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism , Mice , Pre-Eclampsia/metabolism , Placenta/metabolism , Glycosylation , Galectins/metabolism , Neovascularization, Pathologic/metabolism , Disease Models, Animal
6.
Mol Biol Rep ; 51(1): 467, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551765

ABSTRACT

BACKGROUND: Osteosarcoma (OS) stands out as the most common bone tumor, with approximately 20% of the patients receiving a diagnosis of metastatic OS at their initial assessment. A significant challenge lies in the frequent existence of undetected metastases during the initial diagnosis. Mesenchymal stem cells (MSCs) possess unique abilities that facilitate tumor growth, and their interaction with OS cells is crucial for metastatic spread. METHODS AND RESULTS: We demonstrated that, in vitro, MSCs exhibited a heightened migration response toward the secretome of non-metastatic OS cells. When challenged to a secretome derived from lungs preloaded with OS cells, MSCs exhibited greater migration toward lungs colonized with metastatic OS cells. Moreover, in vivo, MSCs displayed preferential migratory and homing behavior toward lungs colonized by metastatic OS cells. Metastatic OS cells, in turn, demonstrated an increased migratory response to the MSCs' secretome. This behavior was associated with heightened cathepsin D (CTSD) expression and the release of active metalloproteinase 2 (MMP2) by metastatic OS cells. CONCLUSIONS: Our assessment focused on two complementary tumor capabilities crucial to metastatic spread, emphasizing the significance of inherent cell features. The findings underscore the pivotal role of signaling integration within the niche, with a complex interplay of migratory responses among established OS cells in the lungs, prometastatic OS cells in the primary tumor, and circulating MSCs. Pulmonary metastases continue to be a significant factor contributing to OS mortality. Understanding these mechanisms and identifying differentially expressed genes is essential for pinpointing markers and targets to manage metastatic spread and improve outcomes for patients with OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Cell Proliferation/genetics , Lung/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Stromal Cells/pathology , Bone Neoplasms/metabolism , Cell Line, Tumor , Tumor Microenvironment
7.
PNAS Nexus ; 2(8): pgad247, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37575671

ABSTRACT

Placental abnormalities cause impaired fetal growth and poor pregnancy outcome (e.g. preeclampsia [PE]) with long-lasting consequences for the mother and offspring. The molecular dialogue between the maternal niche and the developing placenta is critical for the function of this organ. Galectin-1 (gal-1), a highly expressed glycan-binding protein at the maternal-fetal interface, orchestrates the maternal adaptation to pregnancy and placenta development. Down-regulation or deficiency of gal-1 during pregnancy is associated with the development of PE; however, the maternal- and placental-derived gal-1 contributions to the disease onset are largely unknown. We demonstrate that lack of gal-1 imposes a risk for PE development in a niche-specific manner, and this is accompanied by a placental dysfunction highly influenced by the absence of maternal-derived gal-1. Notably, differential placental glycosylation through the Sda-capped N-glycans dominates the invasive trophoblast capacity triggered by maternal-derived gal-1. Our findings show that gal-1 derived from the maternal niche is essential for healthy placenta development and indicate that impairment of the gal-1 signaling pathway within the maternal niche could be a molecular cause for maternal cardiovascular maladaptation during pregnancy.

8.
Front Immunol ; 14: 1196395, 2023.
Article in English | MEDLINE | ID: mdl-37475853

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of ß-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.


Subject(s)
COVID-19 , Placenta , Female , Humans , Infant, Newborn , Pregnancy , Alarmins/metabolism , COVID-19/metabolism , Galectin 1/metabolism , Galectins/metabolism , SARS-CoV-2/metabolism
9.
World J Oncol ; 13(4): 185-189, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36128588

ABSTRACT

Background: Breast cancer is one of the most common malignant forms of neoplasia worldwide; programmed death protein 1 (PD-1), an inhibitory receptor of T lymphocytes, and its ligand programmed death ligand 1 (PD-L1), play an important role in the ability of tumor cells to evade the host's immune system. Methods: We conducted a descriptive, observational study using retrospective data and an open evaluation using immunohistochemistry to determine the general prevalence of PD-L1 expression in 63 women with breast cancer who underwent a modified radical mastectomy, or quadrantectomy, with axillary lymph node removal. Results: The prevalence of PD-L1 expression was 32% in patients with breast cancer treated with radical mastectomy. PD-L1 expression was higher in patients with large tumor size (19% for pT1, 37% for pT2, 50% for pT3, and 100% for pT4), metastasis in regional lymph nodes (25% for N0, 38% for N1, 75% for pN2, and 38% for pN3), and higher histological grade carcinoma (0% for grade 1, 23% for grade 2, and 50% for grade 3). Conclusions: These findings suggest that PD-L1 expression is heterogeneous in breast cancer tumors and that its expression varies highly in tumor regions over time. The evaluation of PD-L1 expression is significant, because of the therapeutical implications that could improve the outcomes and prognosis of these patients.

10.
World J Oncol ; 13(2): 53-58, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35571342

ABSTRACT

Background: In Mexico, about 30% of renal cancer patients are diagnosed in a metastatic state. Despite the recent advances in the treatment of cancer, metastatic renal cancer is still an incurable illness. Thus, identifying prognostic factors helps improve prognosis accuracy and survival prediction for patients. Methods: In this study, we retrospectively analyzed 26 patients with histological diagnosis of renal cell carcinoma, including clear cell and other subtypes in stage IV (metastatic), recurrent or unresectable disease. We performed a multivariate analysis of overall survival regarding the congruity between prognostic scales. Results: Our results showed a significant difference in favor of patients with congruity between scales for progression-free survival (18.9 vs. 3.1 months; P = 0.048) and a tendency towards better overall survival in patients with the congruity of both scales compared to the discordant patients (112 vs. 32 months; P = 0.99). Conclusion: This study highlights the discordance between Memorial Sloan-Kettering Cancer Center and International Metastatic Renal Cell Carcinoma Database Consortium scales, which was associated with worse prognosis with a significant difference in progression-free survival but not in overall survival.

11.
Int J Mol Sci ; 22(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064584

ABSTRACT

Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased ß1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.


Subject(s)
Gene Expression Regulation , Liver Cirrhosis/pathology , Nerve Growth Factor/metabolism , Polysaccharides/metabolism , Receptors, Nerve Growth Factor/metabolism , Stress, Physiological , Thioacetamide/toxicity , Animals , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/genetics
12.
Apoptosis ; 26(7-8): 447-459, 2021 08.
Article in English | MEDLINE | ID: mdl-34024019

ABSTRACT

Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Adaptor Proteins, Signal Transducing , Apoptosis , Apoptosis Regulatory Proteins , Bone Neoplasms/genetics , Cell Line, Tumor , Cell Survival , Humans , Lung Neoplasms/genetics , Osteosarcoma/genetics , Proteomics , Secretome , Up-Regulation
13.
Front Immunol ; 11: 1316, 2020.
Article in English | MEDLINE | ID: mdl-32760395

ABSTRACT

Immune cells [e. g., dendritic cells (DC) and natural killer (NK) cells] are critical players during the pre-placentation stage for successful mammalian pregnancy. Proper placental and fetal development relies on balanced DC-NK cell interactions regulating immune cell homing, maternal vascular expansion, and trophoblast functions. Previously, we showed that in vivo disruption of the uterine NK cell-DC balance interferes with the decidualization process, with subsequent impact on placental and fetal development leading to fetal growth restriction. Glycans are essential determinants of reproductive health and the glycocode expressed in a particular compartment (e.g., placenta) is highly dependent on the cell type and its developmental and pathological state. Here, we aimed to investigate the maternal and placental glycovariation during the pre- and post-placentation period associated with disruption of the NK cell-DC dynamics during early pregnancy. We observed that depletion of NK cells was associated with significant increases of O- and N-linked glycosylation and sialylation in the decidual vascular zone during the pre-placental period, followed by downregulation of core 1 and poly-LacNAc extended O-glycans and increased expression of branched N-glycans affecting mainly the placental giant cells and spongiotrophoblasts of the junctional zone. On the other hand, expansion of DC induced a milder increase of Tn antigen (truncated form of mucin-type O-glycans) and branched N-glycan expression in the vascular zone, with only modest changes in the glycosylation pattern during the post-placentation period. In both groups, this spatiotemporal variation in the glycosylation pattern of the implantation site was accompanied by corresponding changes in galectin-1 expression. Our results show that pre- and post- placentation implantation sites have a differential glycopattern upon disruption of the NK cell-DC dynamics, suggesting that immune imbalance early in gestation impacts placentation and fetal development by directly influencing the placental glycocode.


Subject(s)
Dendritic Cells/immunology , Killer Cells, Natural/immunology , Placenta/immunology , Placentation , Animals , Female , Glycosylation , Male , Mice, Inbred BALB C , Pregnancy
14.
Mol Neurobiol ; 57(2): 600-615, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31399955

ABSTRACT

Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative pathology with no effective therapy until date. This disease promotes hippocampal degeneration, which in turn affects multiple cognitive domains and daily life activities. In this study, we hypothesized that long-lasting therapy with mesenchymal stem cells (MSC) would have a restorative effect on the behavioral alterations and cognitive decline typical of sAD, as they have shown neurogenic and immunomodulatory activities. To test this, we chronically injected intravenous human MSC in a sAD rat model induced by the intracerebroventricular injection of streptozotocin (STZ). During the last 2 weeks, we performed open field, Barnes maze, and marble burying tests. STZ-treated rats displayed a poor performance in all behavioral tests. Cell therapy increased exploratory behavior, decreased anxiety, and improved spatial memory and marble burying behavior, the latter being representative of daily life activities. On the hippocampus, we found that STZ promotes neuronal loss in the Cornus Ammoni (CA1) field and decreased neurogenesis in the dentate gyrus. Also, STZ induced a reduction in hippocampal volume and presynaptic protein levels and an exacerbated microgliosis, relevant AD features. The therapy rescued CA1 neurodegeneration but did not reverse the decrease of immature neurons, suggesting that the therapy effect varied among hippocampal neuronal populations. Importantly, cell therapy ameliorated microgliosis and restored hippocampal atrophy and some presynaptic protein levels in the sAD model. These findings, by showing that intravenous injection of human MSC restores behavioral and hippocampal alterations in experimental sAD, support the potential use of MSC therapy for the treatment of neurodegenerative diseases.


Subject(s)
Behavior, Animal , Hippocampus/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Anxiety/complications , Anxiety/pathology , Anxiety/physiopathology , Exploratory Behavior , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Gliosis/pathology , Male , Maze Learning , Memory , Nerve Tissue Proteins/metabolism , Neurogenesis , Neurons/pathology , Organ Size , Rats, Sprague-Dawley , Spatial Learning , Streptozocin , Synapses/metabolism
15.
Stem Cell Rev Rep ; 15(4): 612-617, 2019 08.
Article in English | MEDLINE | ID: mdl-31119513

ABSTRACT

There is a growing interest in the potential of adult stem cells for implementing regenerative medicine in the brain. We assessed the effect of intracerebroventricular (icv) administration of human umbilical cord perivascular cells (HUCPVCs) on spatial memory of senile (27 mo) female rats, using intact senile counterparts as controls. Approximately one third of the animals were injected in the lateral ventricles with a suspension containing 4.8 X 105 HUCPVC in 8 µl per side. The other third received 4.8 X 105 transgenic HUCPVC overexpressing Insulin-like growth factor-1 (IGF-1) and the last third of the rats received no treatment. Spatial memory performance was evaluated using a modified version of the Barnes maze test. In order to evaluate learning ability as well as spatial memory retention, we assessed the time spent (permanence) by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. Fluorescence microscopy revealed the prescence of Dil-labeled HUCPVC in coronal sections of treated brains. The HUCPVC were located in close contact with the ependymal cells with only a few labeled cells migrating into the brain parenchyma. After treatment with naïve or IGF-1 transgenic HUCPVC, permanence in GS1 and GS3 increased significantly whereas there were no changes in the intact animals. We conclude that HUCPVC injected icv are effective to improve some components of spatial memory in senile rats. The ready accessibility of HUCPVC constitutes a significant incentive to continue the exploration of their therapeutic potential on neurodegenerative diseases.


Subject(s)
Aging , Brain/physiopathology , Cell Transplantation , Memory Disorders/therapy , Spatial Memory , Umbilical Cord , Animals , Female , Humans , Memory Disorders/pathology , Memory Disorders/physiopathology , Rats , Rats, Sprague-Dawley
16.
Behav Brain Res ; 374: 111887, 2019 11 18.
Article in English | MEDLINE | ID: mdl-30951751

ABSTRACT

There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 µl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.


Subject(s)
Aging/drug effects , Mesenchymal Stem Cell Transplantation/methods , Spatial Memory/drug effects , Aging/metabolism , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Doublecortin Protein , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Microglia/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Spatial Memory/physiology , Temporal Lobe/drug effects , Temporal Lobe/metabolism
17.
J Hepatol ; 71(1): 78-90, 2019 07.
Article in English | MEDLINE | ID: mdl-30880225

ABSTRACT

BACKGROUND & AIMS: A causal link has recently been established between epigenetic alterations and hepatocarcinogenesis, indicating that epigenetic inhibition may have therapeutic potential. We aimed to identify and target epigenetic modifiers that show molecular alterations in hepatocellular carcinoma (HCC). METHODS: We studied the molecular-clinical correlations of epigenetic modifiers including bromodomains, histone acetyltransferases, lysine methyltransferases and lysine demethylases in HCC using The Cancer Genome Atlas (TCGA) data of 365 patients with HCC. The therapeutic potential of epigenetic inhibitors was evaluated in vitro and in vivo. RNA sequencing analysis and its correlation with expression and clinical data in the TCGA dataset were used to identify expression programs normalized by Jumonji lysine demethylase (JmjC) inhibitors. RESULTS: Genetic alterations, aberrant expression, and correlation between tumor expression and poor patient prognosis of epigenetic enzymes are common events in HCC. Epigenetic inhibitors that target bromodomain (JQ-1), lysine methyltransferases (BIX-1294 and LLY-507) and JmjC lysine demethylases (JIB-04, GSK-J4 and SD-70) reduce HCC aggressiveness. The pan-JmjC inhibitor JIB-04 had a potent antitumor effect in tumor bearing mice. HCC cells treated with JmjC inhibitors showed overlapping changes in expression programs related with inhibition of cell proliferation and induction of cell death. JmjC inhibition reverses an aggressive HCC gene expression program that is also altered in patients with HCC. Several genes downregulated by JmjC inhibitors are highly expressed in tumor vs. non-tumor parenchyma, and their high expression correlates with a poor prognosis. We identified and validated a 4-gene expression prognostic signature consisting of CENPA, KIF20A, PLK1, and NCAPG. CONCLUSIONS: The epigenetic alterations identified in HCC can be used to predict prognosis and to define a subgroup of high-risk patients that would potentially benefit from JmjC inhibitor therapy. LAY SUMMARY: In this study, we found that mutations and changes in expression of epigenetic modifiers are common events in human hepatocellular carcinoma, leading to an aggressive gene expression program and poor clinical prognosis. The transcriptional program can be reversed by pharmacological inhibition of Jumonji enzymes. This inhibition blocks hepatocellular carcinoma progression, providing a novel potential therapeutic strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis , Carcinoma, Hepatocellular , Epigenesis, Genetic/drug effects , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Liver Neoplasms , Animals , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Centromere Protein A/genetics , Drug Discovery , Humans , Kinesins/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Mice , Mutation , Prognosis , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Transcriptome , Polo-Like Kinase 1
18.
Oncotarget ; 8(46): 80235-80248, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29113298

ABSTRACT

New therapies are needed for advanced hepatocellular carcinoma (HCC) and the use of mesenchymal stromal cells (MSCs) carrying therapeutic genes is a promising strategy. HCC produce cytokines recruiting MSCs to the tumor milieu and modifying its biological properties. Our aim was to study changes generated on human MSCs exposed to conditioned media (CM) derived from human HCC fresh samples and xenografts. All CM shared similar cytokines expression pattern including CXCL1-2-3/GRO, CCL2/MCP-1 and CXCL8/IL-8 being the latter with the highest concentration. Neutralizing and knockdown experiments of CCL2/MCP-1, CXCL8/IL-8, CXCR1 and CXCR2 reduced in vitro MSC migration of ≥20%. Simultaneous CXCR1 and CXCR2 neutralization resulted in 50% of MSC migration inhibition. MSC stimulated with CM (sMSC) from HuH7 or HC-PT-5 showed a 2-fold increase of migration towards the CM compared with unstimulated MSC (usMSC). Gene expression profile of sMSC showed ~500 genes differentially expressed compared with usMSC, being 46 genes related with cell migration and invasion. sMSC increased fibroblasts and endothelial cells chemotaxis. Finally, sMSC with HuH7 CM and then inoculated in HCC tumor bearing-mice did not modify tumor growth. In this work we characterized factors produced by HCC responsible for the changes in MSC chemotactic capacity with would have an impact on therapeutic use of MSCs for human HCC.

19.
Redox Biol ; 11: 335-341, 2017 04.
Article in English | MEDLINE | ID: mdl-28039838

ABSTRACT

Fibroblast growth factor 21 (FGF21) is an endocrine-member of the FGF family. It is synthesized mainly in the liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment protects tissue from an increased oxidative stress environment. Different types of physical stress, such as strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4), involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2, ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies. The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of the new insights of this hormone.


Subject(s)
Diabetes Mellitus/genetics , Fibroblast Growth Factors/genetics , Metabolic Syndrome/genetics , Obesity/genetics , Oxidative Stress/genetics , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Disease Models, Animal , Fibroblast Growth Factors/metabolism , Gene Expression Regulation , Humans , Insulin Resistance , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Obesity/metabolism , Obesity/pathology , Signal Transduction , TATA Box Binding Protein-Like Proteins/genetics , TATA Box Binding Protein-Like Proteins/metabolism
20.
Stem Cell Res Ther ; 7(1): 172, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27876093

ABSTRACT

BACKGROUND: Cirrhosis is a major health problem worldwide and new therapies are needed. Hepatic macrophages (hMø) have a pivotal role in liver fibrosis, being able to act in both its promotion and its resolution. It is well-known that mesenchymal stromal cells (MSCs) can modulate the immune/inflammatory cells. However, the effects of MSCs over hMø in the context of liver fibrosis remain unclear. We previously described evidence of the antifibrotic effects of in vivo applying MSCs, which were enhanced by forced overexpression of insulin-like growth factor 1 (AdIGF-I-MSCs). The aim of this work was to analyze the effect of MSCs on hMø behavior in the context of liver fibrosis resolution. METHODS: Fibrosis was induced in BALB/c mice by chronic administration of thioacetamide (8 weeks). In vivo gene expression analyses, in vitro experiments using hMø isolated from the nonparenchymal liver cells fraction, and in vivo experiments with depletion of Mø were performed. RESULTS: One day after treatment, hMø from fibrotic livers of MSCs-treated animals showed reduced pro-inflammatory and pro-fibrogenic gene expression profiles. These shifts were more pronounced in AdIGF-I-MSCs condition. This group showed a significant upregulation in the expression of arginase-1 and a higher downregulation of iNOS expression thus suggesting decreased levels of oxidative stress. An upregulation in IGF-I and HGF expression was observed in hMø from AdIGF-I-MSCs-treated mice suggesting a restorative phenotype in these cells. Factors secreted by hMø, preconditioned with MSCs supernatant, caused a reduction in the expression levels of hepatic stellate cells pro-fibrogenic and activation markers. Interestingly, hMø depletion abrogated the therapeutic effect achieved with AdIGF-I-MSCs therapy. Expression profile analyses for cell cycle markers were performed on fibrotic livers after treatment with AdIGF-I-MSCs and showed a significant regulation in genes related to DNA synthesis and repair quality control, cell cycle progression, and DNA damage/cellular stress compatible with early induction of pro-regenerative and hepatoprotective mechanisms. Moreover, depletion of hMø abrogated such effects on the expression of the most highly regulated genes. CONCLUSIONS: Our results indicate that AdIGF-I-MSCs are able to induce a pro-fibrotic to resolutive phenotype shift on hepatic macrophages, which is a key early event driving liver fibrosis amelioration.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Liver Cirrhosis/therapy , Macrophages/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Cells, Cultured , Down-Regulation/drug effects , Gene Expression/drug effects , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/physiology , Hepatocyte Growth Factor/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Thioacetamide/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL