Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Commun Chem ; 6(1): 175, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612467

ABSTRACT

Blue copper proteins are models for illustrating how proteins tune metal properties. Nevertheless, the mechanisms by which the protein controls the metal site remain to be fully elucidated. A hindrance is that the closed shell Cu(I) site is inaccessible to most spectroscopic analyses. Carbon deuterium (C-D) bonds used as vibrational probes afford nonperturbative, selective characterization of the key cysteine and methionine copper ligands in both redox states. The structural integrity of Nostoc plastocyanin was perturbed by disrupting potential hydrogen bonds between loops of the cupredoxin fold via mutagenesis (S9A, N33A, N34A), variably raising the midpoint potential. The C-D vibrations show little change to suggest substantial alteration to the Cu(II) coordination in the oxidized state or in the Cu(I) interaction with the cysteine ligand. They rather indicate, along with visible and NMR spectroscopy, that the methionine ligand distinctly interacts more strongly with the Cu(I) ion, in line with the increases in midpoint potential. Here we show that the protein structure determines the redox properties by restricting the interaction between the methionine ligand and Cu(I) in the reduced state.

2.
Phys Chem Chem Phys ; 24(36): 21588-21592, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069424

ABSTRACT

Proteins tune the reactivity of metal sites; less understood is the impact of association with a redox partner. We demonstrate the utility of carbon-deuterium labels for selective analysis of delicate metal sites. Introduced into plastocyanin, they reveal substantial strengthening of the key Cu-Cys89 bond upon association with cytochrome f.


Subject(s)
Copper , Plastocyanin , Carbon , Copper/chemistry , Cytochromes f/metabolism , Deuterium , Oxidation-Reduction , Plastocyanin/chemistry , Plastocyanin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL