Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124176, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38513314

ABSTRACT

Here, we presented a second-order scattering sensor based on the Zn0.97La0.03O compound (LaZnO) for selective and stable detection of glycated albumin (GA, glycemic long-term biomarker). The LaZnO sample was obtained through the co-precipitation method and then characterized using microscopic and spectroscopic techniques. Furthermore, the selectivity, molecular interference, temporal stability, and pH effects of the LaZnO SOS signal in the absence and presence of GA were investigated. The results indicate the stability of the SOS signal over more than 60 days. Assays conducted within the pH range of 5 to 8 indicate that the detection of GA remains unaffected under the given conditions. Selectivity studies show that the SOS signal of LaZnO is reduced only upon contact with GA, while interference studies show that detection is not affected by other chemical species. Additionally, the calibration curve test showed high sensitivity of the material, with a detection limit of 0.55 µg/ml. All the results suggest that LaZnO can deliver efficiency, selectivity, accuracy, and fast response as a GA biosensor, emphasizing LaZnO's usefulness in detecting protein biomarkers.


Subject(s)
Glycated Serum Albumin , Glycation End Products, Advanced , Serum Albumin/metabolism , Biomarkers , Zinc , Blood Glucose
2.
Chemosphere ; 319: 137953, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36709843

ABSTRACT

The development of an original catalytic composite of bacterial cellulose (BC) and pyrite (FeS2) for environmental application was the objective of this study. Nanoparticles of the FeS2 were synthesized from the hydrothermal method and immobilized on the BC structure using ex situ methodology. In the BC, the FTIR and XRD analyzes showed the absorption band associated with the Fe-S bond and crystalline peaks attributed to the pyrite. Thus, the immobilization of the iron particles on the biopolymer was proven, producing the composite BC/FeS2. The use of the SEM technique also ratifies the composite production by identifying the fibrillar structure morphology of the cellulose covered by FeS2 particles. The total iron concentration was 54.76 ± 1.69 mg L-1, determined by flame atomic absorption analysis. TG analysis and degradation tests showed respectively the thermal stability of the new material and its high catalytic potential. A multi-component solution of textile dyes was used as the matrix to be treated via advanced oxidative processes. The composite acted as the catalyst for the Fenton and photo-Fenton processes, with degradations of 52.87 and 96.82%, respectively. The material proved stability by showing low iron leaching (2.02 ± 0.09 and 2.11 ± 0.11 mg L-1 for the respective processes). Thus, its high potential for reuse is presumed, given the remaining concentration of this metal in the BC. The results showed that the BC/FeS2 composite is suitable to solve the problems associated with using catalysts in suspension form.


Subject(s)
Cellulose , Iron , Iron/chemistry , Oxidation-Reduction , Sulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...