Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 220: 106941, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36240857

ABSTRACT

Bothrops snake envenomation is characterized by severe local manifestations such as pain, edema, inflammation, hemorrhage, and myonecrosis. Furthermore, it is described that venom from juvenile and adult snakes may have differences in their composition that can lead to differences in the evolution of the clinical manifestation of the victim. Photobiomodulation (PBM) has been shown to be an effective adjuvant therapy to serum therapy to reduce the local effects induced by bothropic snake venom. This study evaluated the effect of PBM on the local reaction, after Bothrops alternatus snake venom (BaV) injection, in its juvenile (BaJV) and adult (BaAV) stages. Balb/C mice were injected with the juvenile or adult venoms of BaV or saline solution (control group). PBM at a wavelength of 660 nm, 100 mW, 0.33 W/cm2, 40 s, and a 0.028 cm2 beam was applied transcutaneous to a single point with a radiant exposure of 4 J/cm2, 30 min after venom injection. Edema, inflammatory infiltrate, hyperalgesia, and myonecrosis were analyzed. Both venoms induced significant edema and myonecrosis in the gastrocnemius muscle. Hyperalgesia in the mice paw and a prominent leukocyte infiltrate into the peritoneum were also observed. PBM significantly reduced all evaluated parameters. In conclusion, PBM treatment was effective in reducing the local effects induced by B. alternatus venom at different stages of snake development and could be a useful tool as an adjuvant treatment for bothropic envenomation.


Subject(s)
Bothrops , Crotalid Venoms , Low-Level Light Therapy , Muscular Diseases , Mice , Animals , Crotalid Venoms/toxicity , Hyperalgesia , Snake Venoms/toxicity , Edema/chemically induced , Edema/radiotherapy
2.
Curr Top Med Chem ; 19(22): 1962-1980, 2019.
Article in English | MEDLINE | ID: mdl-31345151

ABSTRACT

Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.


Subject(s)
Snake Venoms/pharmacology , Toxins, Biological/pharmacology , Animals , Argentina , Bothrops , Crotalus , Humans , Snake Venoms/chemistry , Snake Venoms/isolation & purification , Toxins, Biological/chemistry , Toxins, Biological/isolation & purification
3.
Toxicon ; 122: 167-175, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27720976

ABSTRACT

Bothrops alternatus snake venom is particularly characterized for inducing a prominent haemorrhage and affecting hemostasis as a consequence of 43.1% of metallo-proteinases and less than 10% of PLA2 (almost all non-myotoxic phospholipases) in its venomics. In addition, myonecrosis is the major local effect in viper envenoming which might lead to permanent sequela. Then, the rebuilding of the microvasculature at the local injured site acquires significance since represents one of the pivotal stages for subsequent skeletal muscle regeneration either at morphological or functional aspects. Due to the significance played by vasculature in this process, it is important to study by histology and immunohistochemical techniques, the muscular damage and the sequence of skeletal muscle reconstruction (degree of damage, reconstitution of muscle fibres and capillaries). In this work, we injected intramuscularly 50 or 100 µg per mouse of B. alternatus venom in gastrocnemius muscles. We provided a complete description and characterization of the different stages of myogenesis after mild (50 µg) and severe (100 µg) local injury induced by B. alternatus venom toxins. The regeneration was evaluated 24 h, 3, 7, 14 and 28 days after receiving venom injection. Finally, both doses induced an extended necrosis at the site of injection where, when critical steps in the regenerative process are taking place, an efficient tissue rebuilding is achieved. B. alternatus venom is characterized by the high percentage of exclusively class P-III metalloproteinases, and by the lack of class P-I metalloproteinases in its venom composition. This could explain the effectiveness of muscle regeneration after venom injection despite the severity of the initial phase of envenoming.


Subject(s)
Crotalid Venoms/administration & dosage , Muscle, Skeletal/physiology , Animals , Bothrops , Regeneration
4.
Chem Biol Interact ; 240: 30-6, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26279213

ABSTRACT

Microvessel disruption leading to hemorrhage stands among the most dangerous consequences of envenomings by snakes of the family Viperidae. A PIII metalloproteinase (SVMP), balteragin, purified from the venom of the snake Bothrops alternatus, displays a potent hemorrhagic effect, and a moderate myotoxicity in vivo. Previous studies described the ability of this SVMP to induce the detachment of C2C12 myoblasts in culture, without causing cytolysis. Surprisingly, a purified acidic phospholipase A2 (PLA2) from the same venom was found to increase this detaching activity of the SVMP on myoblasts. Since endothelial cells are a natural target of SVMPs in vivo, the possibility that this synergistic effect is also observed on this cell type was explored in the present work. In addition, a first approach of the mechanism of action of this effect was studied. Results clearly confirm that the acidic PLA2, despite lacking toxicity towards endothelial cells, significantly enhances the detaching effect of the SVMP even at a concentration as low as 1 µg/mL. Inhibition of enzymatic activity of the PLA2 by chemical modification with p-bromophenacyl bromide did not affect the synergistic activity, suggesting that this effect is not dependent on phospholipase enzymatic activity and may instead be the consequence of an interaction of the PLA2 with endothelial cell plasma membrane. To our knowledge, this is the first report of a synergistic action of a non toxic PLA2 in enhancing the detachment of endothelial cells induced by a metalloproteinase.


Subject(s)
Endothelial Cells/drug effects , Metalloproteases/pharmacology , Phospholipases A2/pharmacology , Snake Venoms/enzymology , Animals , Catalysis , Cell Adhesion , Cell Separation , Endothelial Cells/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...