Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(5): 101552, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38729158

ABSTRACT

Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.


Subject(s)
Protein Biosynthesis , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Female , Cell Line, Tumor , Mice , Protein Biosynthesis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
2.
iScience ; 26(11): 108292, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026225

ABSTRACT

Guanylate-binding protein 1 (GBP1) is known as an interferon-γ-induced GTPase. Here, we used genetically modified ovarian cancer (OC) cells to study the role of GBP1. The data generated show that GBP1 inhibition constrains the clonogenic potential of cancer cells. In vivo studies revealed that GBP1 overexpression in tumors promotes tumor progression and reduces median survival, whereas GBP1 inhibition delayed tumor progression with longer median survival. We employed proteomics-based thermal stability assay (CETSA) on GBP1 knockdown and overexpressed OC cells to study its molecular functions. CETSA results show that GBP1 interacts with many members of the proteasome. Furthermore, GBP1 inhibition sensitizes OC cells to paclitaxel treatment via accumulated ubiquitinylated proteins where GBP1 inhibition decreases the overall proteasomal activity. In contrast, GBP1-overexpressing cells acquired paclitaxel resistance via boosted cellular proteasomal activity. Overall, these studies expand the role of GBP1 in the activation of proteasomal machinery to acquire chemoresistance.

3.
Sci Rep ; 13(1): 17031, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813880

ABSTRACT

Prostate cancer is the most common cancer in men and a major cause of cancer related deaths worldwide. Nearly all affected men develop resistance to current therapies and there is an urgent need to develop new treatments for advanced disease. Aberrant glycosylation is a common feature of cancer cells implicated in all of the hallmarks of cancer. A major driver of aberrant glycosylation in cancer is the altered expression of glycosylation enzymes. Here, we show that GCNT1, an enzyme that plays an essential role in the formation of core 2 branched O-glycans and is crucial to the final definition of O-glycan structure, is upregulated in aggressive prostate cancer. Using in vitro and in vivo models, we show GCNT1 promotes the growth of prostate tumours and can modify the glycome of prostate cancer cells, including upregulation of core 2 O-glycans and modifying the O-glycosylation of secreted glycoproteins. Furthermore, using RNA sequencing, we find upregulation of GCNT1 in prostate cancer cells can alter oncogenic gene expression pathways important in tumour growth and metastasis. Our study highlights the important role of aberrant O-glycosylation in prostate cancer progression and provides novel insights regarding the mechanisms involved.


Subject(s)
Prostatic Neoplasms , Humans , Male , Glycosylation , Polysaccharides/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology
4.
Cell Rep Med ; 3(2): 100502, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35243415

ABSTRACT

Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.


Subject(s)
Prostatic Neoplasms , Proteomics , Cell Proliferation , Glycolysis , HSP90 Heat-Shock Proteins/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy
5.
Cancer Res ; 82(4): 648-664, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34853070

ABSTRACT

The invasive leading edge represents a potential gateway for tumor metastasis. The role of fibroblasts from the tumor edge in promoting cancer invasion and metastasis has not been comprehensively elucidated. We hypothesize that cross-talk between tumor and stromal cells within the tumor microenvironment results in activation of key biological pathways depending on their position in the tumor (edge vs. core). Here we highlight phenotypic differences between tumor-adjacent-fibroblasts (TAF) from the invasive edge and tumor core fibroblasts from the tumor core, established from human lung adenocarcinomas. A multiomics approach that includes genomics, proteomics, and O-glycoproteomics was used to characterize cross-talk between TAFs and cancer cells. These analyses showed that O-glycosylation, an essential posttranslational modification resulting from sugar metabolism, alters key biological pathways including the cyclin-dependent kinase 4 (CDK4) and phosphorylated retinoblastoma protein axis in the stroma and indirectly modulates proinvasive features of cancer cells. In summary, the O-glycoproteome represents a new consideration for important biological processes involved in tumor-stroma cross-talk and a potential avenue to improve the anticancer efficacy of CDK4 inhibitors. SIGNIFICANCE: A multiomics analysis of spatially distinct fibroblasts establishes the importance of the stromal O-glycoproteome in tumor-stroma interactions at the leading edge and provides potential strategies to improve cancer treatment. See related commentary by De Wever, p. 537.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Cyclin-Dependent Kinase 4/genetics , Genomics/methods , Neoplasms/genetics , Proteomics/methods , Retinoblastoma Protein/genetics , Stromal Cells/metabolism , A549 Cells , Cell Line, Tumor , Cyclin-Dependent Kinase 4/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , Humans , Neoplasm Invasiveness , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Retinoblastoma Protein/metabolism , Signal Transduction/genetics , Transcriptome/genetics
6.
Cell Chem Biol ; 28(8): 1206-1220.e6, 2021 08 19.
Article in English | MEDLINE | ID: mdl-33713600

ABSTRACT

Y box binding protein 1 (YB-1) is a multifunctional protein associated with tumor progression and the emergence of treatment resistance (TR). Here, we report an azopodophyllotoxin small molecule, SU056, that potently inhibits tumor growth and progression via YB-1 inhibition. This YB-1 inhibitor inhibits cell proliferation, resistance to apoptosis in ovarian cancer (OC) cells, and arrests in the G1 phase. Inhibitor treatment leads to enrichment of proteins associated with apoptosis and RNA degradation pathways while downregulating spliceosome pathway. In vivo, SU056 independently restrains OC progression and exerts a synergistic effect with paclitaxel to further reduce disease progression with no observable liver toxicity. Moreover, in vitro mechanistic studies showed delayed disease progression via inhibition of drug efflux and multidrug resistance 1, and significantly lower neurotoxicity as compared with etoposide. These data suggest that YB-1 inhibition may be an effective strategy to reduce OC progression, antagonize TR, and decrease patient mortality.


Subject(s)
Antineoplastic Agents/pharmacology , Ovarian Neoplasms/drug therapy , Y-Box-Binding Protein 1/antagonists & inhibitors , Aged , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Middle Aged , Molecular Structure , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Rats , Y-Box-Binding Protein 1/analysis , Y-Box-Binding Protein 1/metabolism
7.
Hepatology ; 73(6): 2342-2360, 2021 06.
Article in English | MEDLINE | ID: mdl-33140851

ABSTRACT

BACKGROUND AND AIMS: Vascular invasion (VI) is a critical risk factor for HCC recurrence and poor survival. The molecular drivers of vascular invasion in HCC are open for investigation. Deciphering the molecular landscape of invasive HCC will help identify therapeutic targets and noninvasive biomarkers. APPROACH AND RESULTS: To this end, we undertook this study to evaluate the genomic, transcriptomic, and proteomic profile of tumors with VI using the multiplatform cancer genome atlas (The Cancer Genome Atlas; TCGA) data (n = 373). In the TCGA Liver Hepatocellular Carcinoma cohort, macrovascular invasion was present in 5% (n = 17) of tumors and microvascular invasion in 25% (n = 94) of tumors. Functional pathway analysis revealed that the MYC oncogene was a common upstream regulator of the mRNA, miRNA, and proteomic changes in VI. We performed comparative proteomic analyses of invasive human HCC and MYC-driven murine HCC and identified fibronectin to be a proteomic biomarker of invasive HCC (mouse fibronectin 1 [Fn1], P = 1.7 × 10-11 ; human FN1, P = 1.5 × 10-4 ) conserved across the two species. Mechanistically, we show that FN1 promotes the migratory and invasive phenotype of HCC cancer cells. We demonstrate tissue overexpression of fibronectin in human HCC using a large independent cohort of human HCC tissue microarray (n = 153; P < 0.001). Lastly, we showed that plasma fibronectin levels were significantly elevated in patients with HCC (n = 35; mean = 307.7 µg/mL; SEM = 35.9) when compared to cirrhosis (n = 10; mean = 41.8 µg/mL; SEM = 13.3; P < 0.0001). CONCLUSIONS: Our study evaluates the molecular landscape of tumors with VI, identifying distinct transcriptional, epigenetic, and proteomic changes driven by the MYC oncogene. We show that MYC up-regulates fibronectin expression, which promotes HCC invasiveness. In addition, we identify fibronectin to be a promising noninvasive proteomic biomarker of VI in HCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Genes, myc , Genomics/methods , Liver Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/pathology , Female , Fibronectins/genetics , Humans , Liver Neoplasms/pathology , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...