Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460121

ABSTRACT

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Neuroglia/pathology , Plaque, Amyloid/pathology , Humans
2.
Nat Commun ; 14(1): 4777, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604818

ABSTRACT

Recombinant human erythropoietin (rhEPO) has potent procognitive effects, likely hematopoiesis-independent, but underlying mechanisms and physiological role of brain-expressed EPO remained obscure. Here, we provide transcriptional hippocampal profiling of male mice treated with rhEPO. Based on ~108,000 single nuclei, we unmask multiple pyramidal lineages with their comprehensive molecular signatures. By temporal profiling and gene regulatory analysis, we build developmental trajectory of CA1 pyramidal neurons derived from multiple predecessor lineages and elucidate gene regulatory networks underlying their fate determination. With EPO as 'tool', we discover populations of newly differentiating pyramidal neurons, overpopulating to ~200% upon rhEPO with upregulation of genes crucial for neurodifferentiation, dendrite growth, synaptogenesis, memory formation, and cognition. Using a Cre-based approach to visually distinguish pre-existing from newly formed pyramidal neurons for patch-clamp recordings, we learn that rhEPO treatment differentially affects excitatory and inhibitory inputs. Our findings provide mechanistic insight into how EPO modulates neuronal functions and networks.


Subject(s)
Erythropoietin , Gene Regulatory Networks , Humans , Male , Animals , Mice , Erythropoietin/genetics , Erythropoietin/pharmacology , Cognition , Learning , Solitary Nucleus
3.
Mol Psychiatry ; 27(5): 2372-2379, 2022 05.
Article in English | MEDLINE | ID: mdl-35414656

ABSTRACT

PREFACE: Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor (EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced hippocampal long-term potentiation. The 'brain hardware upgrade', underlying these observations, includes an EPO induced ~20% increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells, paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive 'brain hardware upgrade' and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motor-cognitive tasks, drift into transient 'functional hypoxia', thereby triggering neuronal EPO/EPOR expression.


Subject(s)
Erythropoietin , Brain/metabolism , Erythropoietin/metabolism , Humans , Hypoxia/metabolism , Neurogenesis , Pyramidal Cells/metabolism , Recombinant Proteins/metabolism
4.
FASEB J ; 33(7): 8634-8647, 2019 07.
Article in English | MEDLINE | ID: mdl-31090455

ABSTRACT

Reduced expression of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) in humans and mice causes white matter inflammation and catatonic signs. These consequences are experimentally alleviated by microglia ablation via colony-stimulating factor 1 receptor (CSF1R) inhibition using PLX5622. Here we address for the first time preclinical topics crucial for translation, most importantly 1) the comparison of 2 long-term PLX5622 applications (prevention and treatment) vs. 1 treatment alone, 2) the correlation of catatonic signs and executive dysfunction, 3) the phenotype of leftover microglia evading depletion, and 4) the role of intercellular interactions for efficient CSF1R inhibition. Based on our Cnp-/- mouse model and in vitro time-lapse imaging, we report the unexpected discovery that microglia surviving under PLX5622 display a highly inflammatory phenotype including aggressive premortal phagocytosis of oligodendrocyte precursor cells. Interestingly, ablating microglia in vitro requires mixed glial cultures, whereas cultured pure microglia withstand PLX5622 application. Importantly, 2 extended rounds of CSF1R inhibition are not superior to 1 treatment regarding any readout investigated (magnetic resonance imaging and magnetic resonance spectroscopy, behavior, immunohistochemistry). Catatonia-related executive dysfunction and brain atrophy of Cnp-/- mice fail to improve under PLX5622. To conclude, even though microglia depletion is temporarily beneficial and worth pursuing, complementary treatment strategies are needed for full and lasting recovery.-Fernandez Garcia-Agudo, L., Janova, H., Sendler, L. E., Arinrad, S., Steixner, A. A., Hassouna, I., Balmuth, E., Ronnenberg, A., Schopf, N., van der Flier, F. J., Begemann, M., Martens, H., Weber, M. S., Boretius, S., Nave, K.-A., Ehrenreich, H. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion.


Subject(s)
2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , Brain/pathology , Encephalitis/genetics , Microglia/pathology , Sequence Deletion/genetics , Adult , Animals , Brain/drug effects , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Organic Chemicals/pharmacology , Phenotype , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Sequence Deletion/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...