Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675222

ABSTRACT

BACKGROUND: Pharmacogenomic knowledge as a biomarker for cancer care has transformed clinical practice, however, as current guidelines are primarily derived from Eurocentric populations, this limits their application in Latin America, particularly among Hispanic or Latino groups. Despite advancements, systemic chemotherapy still poses challenges in drug toxicity and suboptimal response. This study explores pharmacogenetic markers related to anticancer drugs in a Chilean cohort, filling a gap in Latin American research. Notably, the influence of native South American Mapuche-Huilliche ancestry. METHODS: To explore pharmacogenetic markers related to anticancer drugs, we utilized an ethnically Admixed Chilean genome-wide association studies (GWAS) dataset of 1095 unrelated individuals. Pharmacogenomic markers were selected from PharmGKB, totaling 36 level 1 and 2 evidence single nucleotide polymorphisms (SNPs) and 571 level 3 SNPs. Comparative analyses involved assessing SNP frequencies across diverse populations from the 1000 Genomes Project. Haplotypes were estimated, and linkage disequilibrium was examined. Ancestry-based association analyses explored relationships between SNPs and Mapuche-Huilliche and European ancestries. Chi-square distribution with p ≤ 0.05 and Bonferroni's multiple adjustment tests determined statistical differences between allele frequencies. RESULTS: Our study reveals significant disparities in SNP frequency within the Chilean population. Notably, dihydropyrimidine dehydrogenase (DPYD) variants (rs75017182 and rs67376798), linked to an increased risk of severe fluoropyrimidine toxicity, exhibit an exceptionally low frequency (minor allele frequency (MAF) < 0.005). Nudix hydrolase 15 (NUDT15) rs116855232, associated with hematological mercaptopurine toxicity, is relatively common (MAF = 0.062), and is further linked to Mapuche-Huilliche ancestry. Thiopurine methyltransferase enzyme (TPMT), implicated in severe toxicity to mercaptopurines, SNPs rs1142345 and rs1800460 of TMPT gene demonstrate higher MAFs in Admixed Americans and the Chilean population (MAF range 0.031-0.057). Finally, the variant in the UDP-glucuronosyltransferase 1 gene (UGT1A1) rs4148323, correlated with irinotecan neutropenia, exhibits the highest MAF in East Asian (MAF = 0.136) and Chilean (MAF = 0.025) populations, distinguishing them from other investigated populations. CONCLUSIONS: This study provides the first comprehensive pharmacogenetic characterization of cancer therapy-related SNPs and highlights significant disparities in SNP frequencies within the Chilean population. Our findings underscore the necessity for inclusive research and personalized therapeutic strategies to ensure the equitable and effective application of precision medicine across diverse global communities.

2.
J Gastrointest Oncol ; 13(4): 2057-2064, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36092312

ABSTRACT

Background: Early-onset gastric cancers (EOGC) are poor prognosis hard-to treat malignancies that affect young individuals (<45 years old). Case Description: Herein we describe the case of a 26-year-old female EOGC patient that initially displayed stable disease after first-line CAPOX plus immunotherapy. However, patient eventually developed progressive disease and was consecutively switched to paclitaxel plus ramucirumab, and palliative irinotecan. In search for therapeutic alternatives a proteo-genomic analysis was performed in a tissue biopsy taken after the first progression. Our analyses found a total of 18 somatic mutations, including TP53 and PIK3R1, and a previously unreported germline alteration in the tumor suppressor SMAD4. Also, our proteomic analysis found 62 proteins previously documented as "enriched in stomach cancer" and AKT/mTOR and EGFR as pathways with therapeutic potential. Unfortunately, the clinical utility of AKT/mTOR inhibitors or EGFR targeted therapies could not be assessed. Conclusions: As explained above EOGC is a growing health concern that affects young individuals. Furthermore, the reported case displayed a poor response to standard therapy including checkpoint inhibitors and chemotherapy despite the presence of biomarkers that predict a favorable outcome. Future studies should adopt alternative approaches to find novel, more effective therapies.

3.
J Pers Med ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35207683

ABSTRACT

Major advances in sequencing technologies and targeted therapies have accelerated the incorporation of oncology into the era of precision medicine and "biomarker-driven" treatments. However, the impact of this approach on the everyday clinic has yet to be determined. Most precision oncology reports are based on developed countries and usually involve metastatic, hard-to-treat or incurable cancer patients. Moreover, in many cases race and ethnicity in these studies is commonly unreported and real-world evidence in this topic is scarce. Herein, we report data from a total of 202 Chilean advanced stage refractory cancer patients. Retrospectively, we collected patient data from NGS tests and IHC in order to determine the proportion of patients that would benefit from targeted treatments. Overall >20 tumor types were included in our cohort and 37% of patients (n = 74) displayed potentially actionable alterations, including on-label, off-label and immune checkpoint inhibitor recommendations. Our findings were in-line with previous reports such as the cancer genome atlas (TCGA). To our knowledge, this is the first report of its kind in Latin America delivering real-world evidence to estimate the percentage of refractory tumor patients that might benefit from precision oncology. Although this approach is still in its infancy in Chile, we strongly encourage the implementation of mutational tumor boards in our country in order to provide more therapeutic options for advanced stage refractory patients.

4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613445

ABSTRACT

Recently, the combination of chemotherapy plus nivolumab (chemo-immunotherapy) has become the standard of care for advanced-stage gastric cancer (GC) patients. However, despite its efficacy, up to 40% of patients do not respond to these treatments. Our study sought to identify variations in gene expression associated with primary resistance to chemo-immunotherapy. Diagnostic endoscopic biopsies were retrospectively obtained from advanced GC patients previously categorized as responders (R) or non-responders (NR). Thirty-four tumor biopsies (R: n = 16, NR: n = 18) were analyzed by 3' massive analysis of cDNA ends (3'MACE). We found >30 differentially expressed genes between R and NRs. Subsequent pathway enrichment analyses demonstrated that angiogenesis and the Wnt-ß-catenin signaling pathway were enriched in NRs. Concomitantly, we performed next generation sequencing (NGS) analyses in a subset of four NR patients that confirmed alterations in genes that belonged to the Wnt/ß-catenin and the phosphoinositide 3-kinase (PI3K) pathways. We speculate that angiogenesis, the Wnt, and the PI3K pathways might offer actionable targets. We also discuss therapeutic alternatives for chemo-immunotherapy-resistant advanced-stage GC patients.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , beta Catenin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Retrospective Studies , Wnt Signaling Pathway/genetics , Immunotherapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
5.
Rev. méd. Chile ; 149(11)nov. 2021.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1389393

ABSTRACT

With or without a COVID19 pandemic, cancer is and will continue to be one of the greatest health challenges on the planet. In Chile, during 2016, this disease was the second cause of death in the country and during 2019, it was the first cause in seven Chilean regions, surpassing cardiovascular diseases. With the advent of precision medicine as a powerful tool for cancer control, it is necessary to have genomic, proteomic, and molecular data in general, ideally on a population scale. This is essential for decision-making, for example in public and private oncology, to be as cost-effective as possible. Chile has a mass of high-quality researchers in cancer. However, until today the investment in research and development is far below the peers in the OECD. In this work we put into perspective the role of precision medicine and omic sciences as essential tools for public health. We offer a brief national diagnosis of the knowledge collected to date by the local scientific community regarding onco-genomic data from our own population. We finally discuss the potential behind the strengthening of this scientific knowledge, aiming to optimize the comprehensive management of cancer.

6.
Int. j. med. surg. sci. (Print) ; 8(3): 1-11, sept. 2021. tab
Article in Spanish | LILACS | ID: biblio-1292528

ABSTRACT

El cáncer constituye la segunda de causa de muerte a nivel mundial y se estima será la primera, superando a las cardiovasculares. El estudio de sus bases moleculares ha permitido el desarrollo de la quimioterapia clásica, como de nuevas terapias biológicas. Si bien estos avances han redundado en un aumento en la sobrevida, no ha impactado en una menor incidencia de los casos. Esto último se debe, en parte, al desconocimiento de los múltiples factores carcinogénicos existentes y los efectos de sus interacciones para cada uno de los tumores. En este sentido, es interesante notar que, en los currículos de las escuelas de salud de las universidades chilenas, el cáncer u oncología como tal, no constituye una cátedra en sí misma, siendo sus contenidos tangencialmente abordados en distintos momentos de la formación; en biología celular, medicina interna y cirugía, entre otros. Con estos antecedentes, el propósito de este trabajo es ofrecer un propuesta sencilla y accesible para los estudiantes, respecto de los contenidos que, a nuestro juicio, son esenciales para comprender las bases biológicas de esta enfermedad y enfrentar con mejores conocimientos el ciclo clínico posterior. A continuación, el lector se encontrará con principios fundamentales de la biología humana normal (como el ciclo celular y el dogma central de la biología molecular), que permiten obtener una visión global de los mecanismos fisiológicos cuya desregulación conlleva a una neoplasia maligna. Luego se entregarán algunas definiciones amplias en relación con los conceptos de neoplasia, tumor benigno y maligno. Para, finalmente, abordar las principales etapas que permiten el desarrollo del cáncer; (i) iniciación, (ii) promoción y (iii) progresión. En esta última, se profundizará por separado, en angiogénesis, degradación de la matriz extracelular, migración y evasión de la respuesta inmune. Este trabajo no aborda materias relacionadas con la hipótesis metabólica del cáncer.


Cancer constitutes the second most common cause of death worldwide and is expected to become the leading one, even above cardiovascular diseases. The understanding of the cellular and molecular basis of cancer has led not only to the proper development of chemotherapy but also of target therapies. Although these advances are related with improved survival rates among cancer patients, it has poorly impacted its incidences. In this regard, the lack of knowledge regarding the impact that the several carcinogenic factors and their interactions have on different types of cancers may explain at least in part the difficulties to reduce incidence rates. However, is worth noticing that in several health schools of chilean universities, cancer does not constitute a formal course, being only partially approached during other courses, such as cell biology, internal medicine, and surgery. Thus, the aim of our work is to provide students a simple and resumed manuscript about essential topics necessary to understand the biological basis of cancer. First, the reader will find some fundamentals about human biology including the cell cycle and the central dogma of molecular biology, which offers an overview of the physiological mechanisms leading to malignant neoplasia. Then, we will provide current definitions of neoplasia, benign and malignant tumors are provided. Finally, the different stages of tumor progression will be approached to allow the understanding of cancer development. These stages include (i) initiation, (ii) promotion, and (iii) progression. For the last one, metastasis, angiogenesis, extracellular matrix degradation, migration, and immune evasion will also be addressed. This work will not consider the metabolic hypothesis of cancer.


Subject(s)
Education, Medical, Undergraduate , Neoplasms/microbiology , Curriculum
7.
Rev Med Chil ; 149(11): 1657-1663, 2021 Nov.
Article in Spanish | MEDLINE | ID: mdl-35735330

ABSTRACT

With or without a COVID19 pandemic, cancer is and will continue to be one of the greatest health challenges on the planet. In Chile, during 2016, this disease was the second cause of death in the country and during 2019, it was the first cause in seven Chilean regions, surpassing cardiovascular diseases. With the advent of precision medicine as a powerful tool for cancer control, it is necessary to have genomic, proteomic, and molecular data in general, ideally on a population scale. This is essential for decision-making, for example in public and private oncology, to be as cost-effective as possible. Chile has a mass of high-quality researchers in cancer. However, until today the investment in research and development is far below the peers in the OECD. In this work we put into perspective the role of precision medicine and omic sciences as essential tools for public health. We offer a brief national diagnosis of the knowledge collected to date by the local scientific community regarding onco-genomic data from our own population. We finally discuss the potential behind the strengthening of this scientific knowledge, aiming to optimize the comprehensive management of cancer.


Subject(s)
COVID-19 , Neoplasms , Chile/epidemiology , Delivery of Health Care , Humans , Neoplasms/therapy , Proteomics
8.
Mol Ther Nucleic Acids ; 14: 287-300, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30654190

ABSTRACT

PTEN expression is lost in many cancers, and even small changes in PTEN activity affect susceptibility and prognosis in a range of highly aggressive malignancies, such as melanoma and triple-negative breast cancer (TNBC). Loss of PTEN expression occurs via multiple mechanisms, including mutation, transcriptional repression and epigenetic silencing. Transcriptional repression of PTEN contributes to resistance to inhibitors used in the clinic, such as B-Raf inhibitors in BRAF mutant melanoma. We aimed to activate PTEN expression using the CRISPR system, specifically dead (d) Cas9 fused to the transactivator VP64-p65-Rta (VPR). dCas9-VPR was directed to the PTEN proximal promoter by single-guide RNAs (sgRNAs), in cancer cells that exhibited low levels of PTEN expression. The dCas9-VPR system increased PTEN expression in melanoma and TNBC cell lines, without transcriptional regulation at predicted off-target sgRNA binding sites. PTEN activation significantly repressed downstream oncogenic pathways, including AKT, mTOR, and MAPK signaling. BRAF V600E mutant melanoma cells transduced with dCas9-VPR displayed reduced migration, as well as diminished colony formation in the presence of B-Raf inhibitors, PI3K/mTOR inhibitors, and with combined PI3K/mTOR and B-Raf inhibition. CRISPR-mediated targeted activation of PTEN may provide an alternative therapeutic approach for highly aggressive cancers that are refractory to current treatments.

9.
Int J Mol Sci ; 19(7)2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29941787

ABSTRACT

The reprimo (RPRM) gene family is a group of single exon genes present exclusively within the vertebrate lineage. Two out of three members of this family are present in humans: RPRM and RPRM-Like (RPRML). RPRM induces cell cycle arrest at G2/M in response to p53 expression. Loss-of-expression of RPRM is related to increased cell proliferation and growth in gastric cancer. This evidence suggests that RPRM has tumor suppressive properties. However, the molecular mechanisms and signaling partners by which RPRM exerts its functions remain unknown. Moreover, scarce studies have attempted to characterize RPRML, and its functionality is unclear. Herein, we highlight the role of the RPRM gene family in gastric carcinogenesis, as well as its potential applications in clinical settings. In addition, we summarize the current knowledge on the phylogeny and expression patterns of this family of genes in embryonic zebrafish and adult humans. Strikingly, in both species, RPRM is expressed primarily in the digestive tract, blood vessels and central nervous system, supporting the use of zebrafish for further functional characterization of RPRM. Finally, drawing on embryonic and adult expression patterns, we address the potential relevance of RPRM and RPRML in cancer. Active investigation or analytical research in the coming years should contribute to novel translational applications of this poorly understood gene family as potential biomarkers and development of novel cancer therapies.


Subject(s)
Cell Cycle Proteins/genetics , DNA Methylation/genetics , Glycoproteins/genetics , Membrane Proteins/genetics , Stomach Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Promoter Regions, Genetic , Stomach Neoplasms/pathology
10.
Eur J Cancer ; 93: 10-18, 2018 04.
Article in English | MEDLINE | ID: mdl-29433054

ABSTRACT

The hallmarks of cancer were proposed as a logical framework to guide research efforts that aim to understand the molecular mechanisms and derive treatments for this highly complex disease. Recent technological advances, including comprehensive sequencing of different cancer subtypes, have illuminated how genetic and epigenetic alterations are associated with specific hallmarks of cancer. However, as these associations are purely descriptive, one particularly exciting development is the emergence of genome editing technologies, which enable rapid generation of precise genetic and epigenetic modifications to assess the consequences of these perturbations on the cancer phenotype. The most recently developed of these tools, the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), consists of an RNA-guided endonuclease that can be repurposed to edit both genome and epigenome with high specificity, and facilitates the functional interrogation of multiple loci in parallel. This system has the potential to dramatically accelerate progress in cancer research, whether by modelling the genesis and progression of cancer in vitro and in vivo, screening for novel therapeutic targets, conducting functional genomics/epigenomics, or generating targeted cancer therapies. Here, we discuss CRISPR research on each of the ten hallmarks of cancer, outline potential barriers for its clinical implementation and speculate on the advances it may allow in cancer research in the near future.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/genetics , Neoplasms/therapy , Humans , Neoplasm Proteins/genetics
11.
Chem Sci ; 8(4): 2923-2930, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28451358

ABSTRACT

Tools for editing the genome and epigenome have revolutionised the field of molecular biology and represent a new frontier in targeted therapeutic intervention. Although efficiencies and specificities of genome editing technologies have improved with the development of TALEs and CRISPR platforms, intracellular delivery of these larger constructs still remains a challenge using existing delivery agents. Viral vectors, including lentiviruses and adeno-associated viruses, as well as some non-viral strategies, such as cationic polymers and liposomes, are limited by packaging capacity, poor delivery, toxicity, and immunogenicity. We report a highly controlled synthetic strategy to engineer a flexible dendritic polymer using click chemistry to overcome the aforementioned delivery challenges associated with genome engineering technologies. Using a systematic approach, we demonstrate that high transfection efficiencies and packaging capacity can be achieved using this non-viral delivery methodology to deliver zinc fingers, TALEs and CRISPR/dCas9 platforms.

12.
Oncotarget ; 7(37): 60535-60554, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27528034

ABSTRACT

The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.


Subject(s)
CRISPR-Cas Systems/genetics , Homeodomain Proteins/genetics , Lung Neoplasms/metabolism , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Sterile Alpha Motif/genetics , Stomach Neoplasms/metabolism , Zinc Fingers/genetics , Apoptosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Lung Neoplasms/genetics , Serpins/genetics , Serpins/metabolism , Stomach Neoplasms/genetics , Transcriptional Activation , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
13.
Dis Markers ; 2015: 503762, 2015.
Article in English | MEDLINE | ID: mdl-26379360

ABSTRACT

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death, whose patterns vary among geographical regions and ethnicities. It is a multifactorial disease, and its development depends on infection by Helicobacter pylori (H. pylori) and Epstein-Barr virus (EBV), host genetic factors, and environmental factors. The heterogeneity of the disease has begun to be unraveled by a comprehensive mutational evaluation of primary tumors. The low-abundance of mutations suggests that other mechanisms participate in the evolution of the disease, such as those found through analyses of noncoding genomics. Noncoding genomics includes single nucleotide polymorphisms (SNPs), regulation of gene expression through DNA methylation of promoter sites, miRNAs, other noncoding RNAs in regulatory regions, and other topics. These processes and molecules ultimately control gene expression. Potential biomarkers are appearing from analyses of noncoding genomics. This review focuses on noncoding genomics and potential biomarkers in the context of gastric cancer and the gastric precancerous cascade.


Subject(s)
Biomarkers, Tumor/genetics , RNA, Untranslated/genetics , Stomach Neoplasms/genetics , Animals , Gene Expression Regulation, Neoplastic , Humans , Polymorphism, Single Nucleotide , Stomach Neoplasms/etiology , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...