Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Ann N Y Acad Sci ; 1488(1): 33-43, 2021 03.
Article in English | MEDLINE | ID: mdl-33113592

ABSTRACT

To help inform global guidelines on infant feeding, this systematic review synthesizes evidence related to the presence of the Ebola virus (EBOV) in breast milk and its potential risk of viral transmission to the infant when breastfeeding. We relied on a comprehensive search strategy to identify studies including women with suspected, probable, or confirmed EBOV infection, intending to breastfeed or give breast milk to an infant. Our search identified 10,454 records, and after deduplication and screening, we assessed 148 full texts. We included eight studies reporting on 10 breastfeeding mothers and their children (one mother with twins), who provided breast milk samples for assessment. EBOV was detected via RT-PCR or viral culture in seven out of ten breast milk samples. Four out of the five-breastfed infants with EBOV-positive breast milk were found positive for EBOV infection, and all of these EBOV-positive infants died. Since previous reports have detected EBOV in tears, saliva, sweat, and contaminated surfaces, with the current evidence, it is not possible to conclude with certainty that breast milk was the main route of EBOV transmission.


Subject(s)
Breast Feeding/adverse effects , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/transmission , Infectious Disease Transmission, Vertical/prevention & control , Milk, Human/virology , Cross-Sectional Studies , Female , Hemorrhagic Fever, Ebola/epidemiology , Humans , Infant , Infant, Newborn , Randomized Controlled Trials as Topic/methods , Risk Factors
2.
Cochrane Database Syst Rev ; 2019(10)2019 10 25.
Article in English | MEDLINE | ID: mdl-31684687

ABSTRACT

BACKGROUND: Rice fortification with vitamins and minerals has the potential to increase the nutrition in rice-consuming countries where micronutrient deficiencies exist. Globally, 490 million metric tonnes of rice are consumed annually. It is the dominant staple food crop of around three billion people. OBJECTIVES: To determine the benefits and harms of rice fortification with vitamins and minerals (iron, vitamin A, zinc or folic acid) on micronutrient status and health-related outcomes in the general population. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, and 16 other databases all up to 10 December 2018. We searched ClinicalTrials.gov, and World Health Organization International Clinical Trials Registry Platform (ICTRP) on 10 December 2018. SELECTION CRITERIA: We included randomised and quasi-randomised trials (with either individual or cluster randomisation) and controlled before-and-after studies. Participants were populations older than two years of age (including pregnant women) from any country. The intervention was rice fortified with at least one micronutrient or a combination of several micronutrients (iron, folic acid, zinc, vitamin A or other vitamins and minerals) compared with unfortified rice or no intervention. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Two review authors independently screened studies and extracted data. MAIN RESULTS: We included 17 studies (10,483 participants) and identified two ongoing studies. Twelve included studies were randomised-controlled trials (RCTs), with 2238 participants after adjusting for clustering in two cluster-RCTs, and five were non-randomised studies (NRS) with four controlled before-and-after studies and one cross-sectional study with a control (8245 participants). Four studies were conducted in India, three in Thailand, two in the Philippines, two in Brazil, one each in Bangladesh, Burundi, Cambodia, Indonesia, Mexico and the USA. Two studies involved non-pregnant, non-lactating women and 10 involved pre-school or school-age children. All 17 studies reported fortification with iron. Of these, six studies fortified rice with iron only; 11 studies had other micronutrients added (iron, zinc and vitamin A, and folic acid). One study had one arm each with vitamin A alone and carotenoid alone. Elemental iron content ranged from 0.2 to 112.8 mg/100 g uncooked rice given for a period varying from two weeks to 48 months. Thirteen studies did not clearly describe either sequence generation or allocation concealment. Eleven studies had a low attrition rate. There was no indication of selective reporting in the studies. We considered two RCTs at low overall risk of bias and 10 at high overall risk of bias. One RCT was at high or unclear risk of bias for most of the domains. All controlled before-and-after studies had a high risk or unclear risk of bias in most domains. The included studies were funded by Government, private and non-governmental organisations, along with other academic institutions. The source of funding does not appear to have altered the results. We used the NRS in the qualitative synthesis but we excluded them from the quantitative analysis and review conclusions since they provided mostly contextual information and limited quantitative information. Rice fortified with iron alone or in combination with other micronutrients versus unfortified rice (no micronutrients added) Fortification of rice with iron (alone or in combination with other micronutrients) may make little or no difference in the risk of having anaemia (risk ratio (RR) 0.72, 95% confidence interval (CI) 0.54 to 0.97; I2 = 74%; 7 studies, 1634 participants; low-certainty evidence) and may reduce the risk of iron deficiency (RR 0.66, 95% CI 0.51 to 0.84; 8 studies, 1733 participants; low-certainty evidence). Rice fortification may increase mean haemoglobin (mean difference (MD) 1.83, 95% CI 0.66 to 3.00; I2 = 54%; 11 studies, 2163 participants; low-certainty evidence) and it may make little or no difference to vitamin A deficiency (with vitamin A as one of the micronutrients in the fortification arm) (RR 0.68, 95% CI 0.36 to 1.29; I2 = 37%; 4 studies, 927 participants; low-certainty evidence). One study reported that fortification of rice (with folic acid as one of the micronutrients) may improve serum or plasma folate (nmol/L) (MD 4.30, 95% CI 2.00 to 6.60; 215 participants; low-certainty evidence). One study reported that fortification of rice with iron alone or with other micronutrients may slightly increase hookworm infection (RR 1.78, 95% CI 1.18 to 2.70; 785 participants; low-certainty evidence). We are uncertain about the effect of fortified rice on diarrhoea (RR 3.52, 95% CI 0.18 to 67.39; 1 study, 258 participants; very low-certainty evidence). Rice fortified with vitamin A alone or in combination with other micronutrients versus unfortified rice (no micronutrients added) One study had one arm providing fortified rice with vitamin A only versus unfortified rice. Fortification of rice with vitamin A (in combination with other micronutrients) may increase mean haemoglobin (MD 10.00, 95% CI 8.79 to 11.21; 1 study, 74 participants; low-certainty evidence). Rice fortified with vitamin A may slightly improve serum retinol concentration (MD 0.17, 95% CI 0.13 to 0.21; 1 study, 74 participants; low-certainty evidence). No studies contributed data to the comparisons of rice fortification versus no intervention. The studies involving folic acid and zinc also involved iron in the fortification arms and hence we reported them as part of the first comparison. AUTHORS' CONCLUSIONS: Fortification of rice with iron alone or in combination with other micronutrients may make little or no difference in the risk of having anaemia or presenting iron deficiency and we are uncertain about an increase in mean haemoglobin concentrations in the general population older than 2 years of age. Fortification of rice with iron and other micronutrients such as vitamin A or folic acid may make little or no difference in the risk of having vitamin A deficiency or on the serum folate concentration. There is limited evidence on any adverse effects of rice fortification.


Subject(s)
Avitaminosis/prevention & control , Food, Fortified , Micronutrients , Minerals/administration & dosage , Vitamins/administration & dosage , Adolescent , Adult , Anemia, Iron-Deficiency/prevention & control , Child , Child, Preschool , Female , Humans , Male , Malnutrition/prevention & control , Micronutrients/administration & dosage , Micronutrients/deficiency , Oryza , Pregnancy , Randomized Controlled Trials as Topic , Young Adult
3.
Cochrane Database Syst Rev ; 12: CD010187, 2018 12 22.
Article in English | MEDLINE | ID: mdl-30577080

ABSTRACT

BACKGROUND: Approximately 800 million women and children have anaemia, a condition thought to cause almost 9% of the global burden of years lived with disability. Around half this burden could be amenable to interventions that involve the provision of iron. Maize (corn) is one of the world's most important cereal grains and is cultivated across most of the globe. Several programmes around the world have fortified maize flour and other maize-derived foodstuffs with iron and other vitamins and minerals to combat anaemia and iron deficiency. OBJECTIVES: To assess the effects of iron fortification of maize flour, corn meal and fortified maize flour products for anaemia and iron status in the general population. SEARCH METHODS: We searched the following international and regional sources in December 2017 and January 2018: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; MEDLINE (R) In Process; Embase; Web of Science (both the Social Science Citation Index and the Science Citation Index); CINAHL Ebsco; POPLINE; AGRICOLA (agricola.nal.usda.gov); BIOSIS (ISI); Bibliomap and TRoPHI; IBECS; Scielo; Global Index Medicus - AFRO (includes African Index Medicus); EMRO (includes Index Medicus for the Eastern Mediterranean Region); LILACS; PAHO (Pan American Health Library); WHOLIS (WHO Library); WPRO (includes Western Pacific Region Index Medicus); IMSEAR, Index Medicus for the South-East Asian Region; IndMED, Indian medical journals; and the Native Health Research Database. We searched clinicaltrials.gov and the International Clinical Trials Registry Platform (ICTRP) for any ongoing or planned studies on 17 January 2018 and contacted authors of such studies to obtain further information or eligible data if available.For assistance in identifying ongoing or unpublished studies, we also contacted relevant international organisations and agencies working in food fortification on 9 August 2016. SELECTION CRITERIA: We included cluster- or individually randomised controlled trials and observational studies. Interventions included (central/industrial) fortification of maize flour or corn meal with iron alone or with other vitamins and minerals and provided to individuals over 2 years of age (including pregnant and lactating women) from any country. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the eligibility of studies for inclusion, extracted data from included studies and assessed the risk of bias of the included studies. Trial designs with a comparison group were included to assess the effects of interventions. Trial designs without a control or comparison group (uncontrolled before-and-after studies) were included for completeness but were not considered in assessments of the overall effectiveness of interventions or used to draw conclusions regarding the effects of interventions in the review. MAIN RESULTS: Our search yielded 4529 records. After initial screening of titles and abstracts, we reviewed the full text of 75 studies (80 records). We included 5 studies and excluded 70. All the included studies assessed the effects of providing maize products fortified with iron plus other vitamins and minerals versus unfortified maize flour. No studies compared this intervention to no intervention or looked at the relative effect of flour and products fortified with iron alone (without other vitamins and minerals). Three were randomised trials involving 2610 participants, and two were uncontrolled before-and-after studies involving 849 participants.Only three studies contributed data for the meta-analysis and included children aged 2 to 11.9 years and women. Compared to unfortified maize flour, it is uncertain whether fortifying maize flour or corn meal with iron and other vitamins and minerals has any effect on anaemia (risk ratio (RR) 0.90, 95% confidence interval (CI) 0.58 to 1.40; 2 studies; 1027 participants; very low-certainty evidence), or on the risk of iron deficiency (RR 0.75, 95% CI 0.49 to 1.15; 2 studies; 1102 participants; very low-certainty evidence), haemoglobin concentration (mean difference (MD) 1.25 g/L, 95% CI -2.36 to 4.86 g/L; 3 studies; 1144 participants; very low-certainty evidence) or ferritin concentrations (MD 0.48 µg/L, 95% CI -0.37 to 1.33 µg/L; 1 study; 584 participants; very low-certainty evidence).None of the studies reported on any adverse effects. We judged the certainty of the evidence to be very low based on GRADE, so we are uncertain whether the results reflect the true effect of the intervention. We downgraded evidence due to high risk of selection bias and unclear risk of performance bias in one of two included studies, high heterogeneity and wide CIs crossing the line of no effect for anaemia prevalence and haemoglobin concentration. AUTHORS' CONCLUSIONS: It is uncertain whether fortifying maize flour with iron and other vitamins and minerals reduces the risk of anaemia or iron deficiency in children aged over 2 years or in adults. Moreover, the evidence is too uncertain to conclude whether iron-fortified maize flour, corn meal or fortified maize flour products have any effect on reducing the risk of anaemia or on improving haemoglobin concentration in the population.We are uncertain whether fortification of maize flour with iron reduces anaemia among the general population, as the certainty of the evidence is very low. No studies reported on any adverse effects.Public organisations funded three of the five included studies, while the private sector gave grants to universities to perform the other two. The presence of industry funding for some of these trials did not appear to positively influence results from these studies.The reduced number of studies, including only two age groups (children and women of reproductive age), as well as the limited number of comparisons (only one out of the four planned) constitute the main limitations of this review.


Subject(s)
Anemia/prevention & control , Flour , Food, Fortified , Iron, Dietary/administration & dosage , Trace Elements/administration & dosage , Vitamins/administration & dosage , Zea mays/chemistry , Adolescent , Adult , Anemia/blood , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/prevention & control , Child , Child, Preschool , Female , Ferritins/blood , Hemoglobin A/analysis , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Uncertainty , Young Adult
4.
PLoS One ; 13(5): e0196576, 2018.
Article in English | MEDLINE | ID: mdl-29723227

ABSTRACT

BACKGROUND: Different laboratory methods are used to quantify ferritin concentrations as a marker of iron status. A systematic review was undertaken to assess the accuracy and comparability of the most used methods for ferritin detection. METHODS AND FINDINGS: National and regional databases were searched for prospective, retrospective, sectional, longitudinal and case-control studies containing the characteristics and performance of at least one method for serum/plasma ferritin determinations in humans published to date. The analysis included the comparison between at least 2 methods detailing: sensitivity, precision, accuracy, predictive values, inter-methods adjustment, and use of international reference materials. Pooled method performance was analyzed for each method and across methods. OUTCOMES: Search strategy identified 11893 records. After de-duplication and screening 252 studies were assessed, including 187 studies in the qualitative analysis and 148 in the meta-analysis. The most used methods included radiometric, nonradiometric and agglutination assays. The overall within-run imprecision for the most reported ferritin methods was 6.2±3.4% (CI 5.69-6.70%; n = 171), between-run imprecision 8.9±8.7% (CI 7.44-10.35%; n = 136), and recovery rate 95.6% (CI 91.5-99.7%; n = 94). The pooled regression coefficient was 0.985 among all methods analyzed, and 0.984 when comparing nonradiometric and radiometric methods, without statistical differences in ferritin concentration ranging from 2.3 to 1454 µµg/L. CONCLUSION: The laboratory methods most used to determine ferritin concentrations have comparable accuracy and performance. Registered in PROSPERO CRD42016036222.


Subject(s)
Blood Chemical Analysis/methods , Ferritins/blood , Blood Chemical Analysis/standards , Blood Chemical Analysis/statistics & numerical data , Ferritins/standards , Humans , Iron/blood , Limit of Detection , Plasma/chemistry , Reference Standards , Serum/chemistry
5.
PLoS Negl Trop Dis ; 11(4): e0005528, 2017 04.
Article in English | MEDLINE | ID: mdl-28394887

ABSTRACT

BACKGROUND: Zika virus (ZIKV) infection is an emerging mosquito-borne disease, which is associated with an increase in central nervous system malformations and newborn microcephaly cases. This review investigated evidence of breastfeeding transmission from ZIKV-infected mothers to their children and the presence of ZIKV infection in breastfeeding-related fluids. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a systematic review of observational studies, case studies, and surveillance reports involving breastfeeding women with ZIKV infection in several international databases. Data extraction and analysis were conducted following a PROSPERO-registered protocol. From 472 non-duplicate records, two case reports met criteria for inclusion. We reviewed three cases of ZIKV infection among lactating mothers near the time of delivery. Two of the three (2/3) associated newborns had evidence of ZIKV infection. ZIKV was detected in breast milk of all three mothers. Breast milk detection results were positive in all mothers (3/3) by RT-PCR, one was positive by culture (1/3), and none was tested for ZIKV-specific antibodies. Serum samples were ZIKV positive in all mothers (3/3), and sweat was not tested for ZIKV. CONCLUSIONS/SIGNIFICANCE: We describe three cases of ZIKV-infected breastfeeding mothers who were symptomatic within three days of delivery, and two cases with ZIKV-infected newborns. While ZIKV was detected in the breast milk of all three mothers, the data are not sufficient to conclude ZIKV transmission via breastfeeding. More evidence is needed to distinguish breastfeeding transmission from other perinatal transmission routes.


Subject(s)
Breast Feeding/adverse effects , Infectious Disease Transmission, Vertical , Milk, Human/virology , Zika Virus Infection/transmission , Zika Virus/isolation & purification , Female , Humans , Infant, Newborn , Microcephaly/virology , Pregnancy
6.
Cochrane Database Syst Rev ; (7): CD004736, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26198451

ABSTRACT

BACKGROUND: Iron and folic acid supplementation has been the preferred intervention to improve iron stores and prevent anaemia among pregnant women, and it is thought to improve other maternal and birth outcomes. OBJECTIVES: To assess the effects of daily oral iron supplements for pregnant women, either alone or in conjunction with folic acid, or with other vitamins and minerals as a public health intervention in antenatal care. SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (10 January 2015). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) (26 February 2015) and contacted relevant organisations for the identification of ongoing and unpublished studies (26 February 2015) . SELECTION CRITERIA: Randomised or quasi-randomised trials evaluating the effects of oral preventive supplementation with daily iron, iron + folic acid or iron + other vitamins and minerals during pregnancy. DATA COLLECTION AND ANALYSIS: We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. We used the GRADE approach to assess the quality of the evidence for primary outcomes.We anticipated high heterogeneity among trials and we pooled trial results using a random-effects model and were cautious in our interpretation of the pooled results: the random-effects model gives the average treatment effect. MAIN RESULTS: We included 61 trials. Forty-four trials, involving 43,274 women, contributed data and compared the effects of daily oral supplements containing iron versus no iron or placebo.Preventive iron supplementation reduced maternal anaemia at term by 70% (risk ratio (RR) 0.30; 95% confidence interval (CI) 0.19 to 0.46, 14 trials, 2199 women, low quality evidence), iron-deficiency anaemia at term (RR 0.33; 95% CI 0.16 to 0.69, six trials, 1088 women), and iron deficiency at term by 57% (RR 0.43; 95% CI 0.27 to 0.66, seven trials, 1256 women, low quality evidence). There were no clear differences between groups for severe anaemia in the second or third trimester, or maternal infection during pregnancy (RR 0.22; 95% CI 0.01 to 3.20, nine trials, 2125 women, very low quality evidence; and, RR 1.21; 95% CI 0.33 to 4.46; one trial, 727 women, low quality evidence, respectively), or maternal mortality (RR 0.33; 95% CI 0.01 to 8.19, two trials, 12,560 women, very low quality evidence), or reporting of side effects (RR 1.29; 95% CI 0.83 to 2.02, 11 trials, 2423 women, very low quality evidence). Women receiving iron were on average more likely to have higher haemoglobin (Hb) concentrations at term and in the postpartum period, but were at increased risk of Hb concentrations greater than 130 g/L during pregnancy, and at term.Compared with controls, women taking iron supplements less frequently had low birthweight newborns (8.4% versus 10.3%, average RR 0.84; 95% CI 0.69 to 1.03, 11 trials, 17,613 women, low quality evidence), and preterm babies (RR 0.93; 95% CI 0.84 to 1.03, 13 trials, 19,286 women, moderate quality evidence). They appeared to also deliver slightly heavier babies (mean difference (MD) 23.75; 95% CI -3.02 to 50.51, 15 trials, 18,590 women, moderate quality evidence). None of these results were statistically significant. There were no clear differences between groups for neonatal death (RR 0.91; 95% CI 0.71 to 1.18, four trials, 16,603 infants, low quality evidence), or congenital anomalies (RR 0.88, 95% CI 0.58 to 1.33, four trials, 14,636 infants, low quality evidence).Twenty-three studies were conducted in countries that in 2011 had some malaria risk in parts of the country. In some of these countries/territories, malaria is present only in certain areas or up to a particular altitude. Only two of these studies reported malaria outcomes. There is no evidence that iron supplementation increases placental malaria. For some outcomes heterogeneity was higher than 50%. AUTHORS' CONCLUSIONS: Supplementation reduces the risk of maternal anaemia and iron deficiency in pregnancy but the positive effect on other maternal and infant outcomes is less clear. Implementation of iron supplementation recommendations may produce heterogeneous results depending on the populations' background risk for low birthweight and anaemia, as well as the level of adherence to the intervention.


Subject(s)
Anemia, Iron-Deficiency/prevention & control , Dietary Supplements/adverse effects , Folic Acid/administration & dosage , Iron/administration & dosage , Pregnancy Complications, Hematologic/prevention & control , Female , Humans , Infant, Low Birth Weight , Infant, Newborn , Iron, Dietary/administration & dosage , Pregnancy , Pregnancy Outcome , Prenatal Care/methods , Randomized Controlled Trials as Topic
7.
J Food Sci ; 79(4): H706-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24665932

ABSTRACT

Due to the high prevalence of iron and vitamin A deficiencies and to the controversy about the role of vitamin A and carotenoids in iron absorption, the objectives of this study were to evaluate the following: (1) the effect of a molar excess of vitamin A as well as the role of tannic acid on iron uptake by Caco-2 cells; (2) iron uptake and ferritin synthesis in presence of carotenoids without pro-vitamin A activity: lycopene, lutein, and zeaxantin; and (3) iron uptake and ferritin synthesis from ferrous fumarate and NaFe-EDTA. Cells were incubated 1 h at 37 °C in PBS pH 5.5, containing (59) Fe and different iron compounds. Vitamin A, ferrous fumarate, ß-carotene, lycopene, lutein, zeaxantin, and tannic acid were added to evaluate uptake. Ferritin synthesis was measured 24 h after uptake experiments. Vitamin A had no effect on iron uptake by Caco-2 cells, and was significantly lower from NaFe-EDTA than from ferrous fumarate (15.2 ± 2.5 compared with 52.5 ± 8.3 pmol Fe/mg cell protein, respectively). Carotenoids increase uptake up to 50% from fumarate and up to 300% from NaFe-EDTA, since absorption from this compound is low when administered alone. We conclude the following: (1) There was no effect of vitamin A on iron uptake and ferritin synthesis by Caco-2cells. (2) Carotenoids significantly increased iron uptake from ferrous fumarate and NaFe-EDTA, and were capable of partially overcoming the inhibition produced by tannic acid. (3) Iron uptake by Caco-2 cell from NaFe-EDTA was significantly lower compared to other iron compounds, although carotenoids increased and tannic acid inhibited iron uptake comparably to ferrous fumarate.


Subject(s)
Carotenoids/pharmacology , Ferritins/biosynthesis , Intestinal Absorption/drug effects , Iron Compounds/metabolism , Iron/metabolism , Tannins/pharmacology , Vitamin A/pharmacology , Antioxidants/pharmacology , Caco-2 Cells , Edetic Acid/chemistry , Ferrous Compounds/metabolism , Ferrous Compounds/pharmacology , Humans , Iron Chelating Agents/chemistry , Iron Compounds/pharmacology , Plant Extracts/pharmacology , Vitamins/pharmacology
8.
Br J Nutr ; 103(6): 798-802, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20003622

ABSTRACT

Since there is a reported interrelationship between vitamin A and Fe metabolism, and with immunological response, the objective was to evaluate the effect of a single dose of vitamin A administered to preschool children, on Fe and vitamin A nutritional status, anaemia and phagocytic function of neutrophils, 30 d after supplementation. A total of eighty children (sixty-eight supplemented and twelve controls) were supplemented orally with 200,000 IU (60 mg) vitamin A, and evaluated for nutritional, haematological and immunological responses at the beginning of the study and 30 d after supplementation. Parameters studied included Hb, serum ferritin, retinol and Fe concentrations, transferrin saturation, IL-4, interferon-gamma and phagocityc capacity of neutrophils using non-fluorescent latex microbeads. After supplementation there was a significant increase in Hb concentration (P = 0.03), mean corpuscular Hb concentration (P = 0.001) and serum retinol (P = 0.0078). Prevalences of anaemia and vitamin A deficiency decreased significantly from 17.6 % to 13.2 % and from 25 % to 13.2 %, respectively. Regarding phagocytic function, there was a significant increase in the number of microbeads engulfed by neutrophils (P < 0.05) and no significant changes in cytokine concentrations at 1 month after treatment. A single dose of 200,000 IU (60 mg) vitamin A administered orally to a group of preschool children with a high prevalence of vitamin A deficiency enhanced serum retinol and Hb concentrations, decreased the prevalence of anaemia and vitamin A deficiency and improved the constitutive phagocytic capacity of neutrophils. Vitamin A supplementation could help to decrease vitamin A deficiency, anaemia prevalence and to improve the innate immunity response in preschool children. The effects were obtained without Fe supplementation.


Subject(s)
Hemoglobins/analysis , Neutrophils/immunology , Nutritional Status , Phagocytosis , Vitamin A/administration & dosage , Vitamin A/blood , Anemia/epidemiology , Child , Child, Preschool , Erythrocyte Indices , Female , Ferritins/blood , Humans , Interferon-gamma/blood , Interleukin-4/blood , Iron/blood , Male , Venezuela/epidemiology , Vitamin A Deficiency/epidemiology
9.
Br J Nutr ; 101(1): 79-85, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18634709

ABSTRACT

Marine algae are easily produced and are good sources of Fe. If this Fe is bioavailable, algae consumption could help to combat Fe deficiency and anaemia worldwide. The objective of the present study was to evaluate Fe bioavailability, polyphenol content and antioxidant capacity from three species of marine algae distributed worldwide. A total of eighty-three subjects received maize- or wheat-based meals containing marine algae (Ulva sp., Sargassum sp. and Porphyra sp.) in different proportions (2.5, 5.0 and 7.5 g) added to the water to prepare the dough. All meals administered contained radioactive Fe. Absorption was evaluated calculating radioactive Fe incorporation in subjects' blood. The three species of marine algae were analysed for polyphenol content and reducing power. Algae significantly increased Fe absorption in maize- or wheat-based meals, especially Sargassum sp., due to its high Fe content. Increases in absorption were dose-dependent and higher in wheat- than in maize-based meals. Total polyphenol content was 10.84, 18.43 and 80.39 gallic acid equivalents/g for Ulva sp., Porphyra sp. and Sargassum sp., respectively. The antioxidant capacity was also significantly higher in Sargassum sp. compared with the other two species analysed. Ulva sp., Sargassum sp. and Porphyra sp. are good sources of bioavailable Fe. Sargassum sp. resulted in the highest Fe intake due to its high Fe content, and a bread containing 7.5 g Sargassum sp. covers daily Fe needs. The high polyphenol content found in Sargassum sp. could be partly responsible for the antioxidant power reported here, and apparently did not affect Fe absorption.


Subject(s)
Antioxidants/analysis , Eukaryota/chemistry , Flavonoids/analysis , Food, Fortified/analysis , Iron, Dietary/pharmacokinetics , Phenols/analysis , Adult , Anthropometry/methods , Biological Availability , Bread/analysis , Female , Flour/analysis , Humans , Iron, Dietary/analysis , Male , Middle Aged , Polyphenols , Porphyra/chemistry , Sargassum/chemistry , Ulva/chemistry , Young Adult
10.
J Nutr ; 137(12): 2691-5, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18029485

ABSTRACT

Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.


Subject(s)
Dietary Supplements , Eukaryota/chemistry , Eukaryota/metabolism , Iron/analysis , Iron/pharmacokinetics , Adolescent , Adult , Ascorbic Acid/analysis , Ascorbic Acid/metabolism , Biological Availability , Cooking , Eukaryota/classification , Female , Humans , Male , Middle Aged , Oryza , Phytic Acid/analysis , Phytic Acid/metabolism , Seasons , Venezuela
11.
J Nutr ; 134(5): 1099-104, 2004 May.
Article in English | MEDLINE | ID: mdl-15113952

ABSTRACT

Daily iron supplementation programs for pregnant women recommend amounts of iron that are considered by some to be excessive, and either lower-dose or less frequent iron supplementation regimens have been proposed. A randomized, placebo-controlled study was performed to assess and compare the relative effectiveness of a weekly (WS) or twice weekly (TW) iron supplementation schedule in maintaining or achieving hemoglobin (Hb) levels at term considered to carry minimal maternal and fetal risk (90-130 g/L). Pregnant women (n = 116) at wk 10-30 of gestation (63 WS and 53 TW) were enrolled in the study (52 in WS and 44 TW completed the study). Women were randomly allocated to receive a 120-mg oral dose of iron as ferrous sulfate and 0.5 mg of folic acid weekly (n = 52) or 60 mg iron and 0.25 mg folic acid and a placebo twice weekly (n = 44). Hb, hematocrit, serum ferritin, and transferrin saturation were estimated at baseline and at 36-39 wk of gestation. Baseline dietary data and the presence and intensity of intestinal helminthic infections were assessed. The duration of supplementation was 14 +/- 4 wk and the median level of adherence was 60.5%. Hb concentrations improved in women following the TW regimen and in women following WS who had low baseline Hb levels. About 89% of WS women and 95% of TW women maintained Hb levels at term (between 90 g/L and 130 g/L), a range associated with optimal pregnancy outcomes. One woman in the TW group exhibited higher Hb levels that potentially carried perinatal risk (>130 g/L). Intermittent iron and folic acid supplementation may be a valid strategy when used as a preventive intervention in prenatal care settings.


Subject(s)
Dietary Supplements , Hemoglobins/analysis , Intestines/parasitology , Iron/administration & dosage , Pregnancy/blood , Administration, Oral , Diet , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Folic Acid/administration & dosage , Helminthiasis/diagnosis , Helminthiasis/physiopathology , Humans , Osmolar Concentration , Patient Compliance , Severity of Illness Index , Venezuela
SELECTION OF CITATIONS
SEARCH DETAIL
...