Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 13(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34959348

ABSTRACT

Mutant p53 proteins result from missense mutations in the TP53 gene, the most mutated in human cancer, and have been described to contribute to cancer initiation and progression. Therapeutic strategies for targeting mutant p53 proteins in cancer cells are limited and have proved unsuitable for clinical application due to problems related to drug delivery and toxicity to healthy tissues. Therefore, the discovery of efficient and safe therapeutic strategies that specifically target mutant p53 remains challenging. In this study, we generated gold nanoparticles (AuNPs) chemically modified with low molecular branched polyethylenimine (bPEI) for the efficient delivery of gapmers targeting p53 mutant protein. The AuNPs formulation consists of a combination of polymeric mixed layer of polyethylene glycol (PEG) and PEI, and layer-by-layer assembly of bPEI through a sensitive linker. These nanoparticles can bind oligonucleotides through electrostatic interactions and release them in the presence of a reducing agent as glutathione. The nanostructures generated here provide a non-toxic and powerful system for the delivery of gapmers in cancer cells, which significantly downregulated mutant p53 proteins and altered molecular markers related to cell growth and apoptosis, thus overcoming chemoresistance to gemcitabine.

2.
Cancers (Basel) ; 13(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208533

ABSTRACT

Albumin-based nanoparticles are an emerging platform for the delivery of various chemotherapeutics because of their biocompatibility, safety, and ease of surface modification for specific targeting. The most widely used method for the preparation of albumin nanoparticles is by desolvation process using glutaraldehyde (GLU) as a cross-linker. However, limitations of GLU like toxicity and interaction with drugs force the need for alternative cross-linkers. In the present study, several cross-linking systems were evaluated for the preparation of Bovine Serum Albumin (BSA) nanoparticles (ABNs) encapsulating Doxorubicin (Dox). Based on the results obtained from morphological characterization, in vitro release, and therapeutic efficacy in cells, N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP)-modified ABNs (ABN-SPDP) was chosen. Since ABN-SPDP are formed with disulfide linkage, the drug release is facilitated under a highly reducing environment present in the tumor sites. The cytotoxicity studies of those ABN-SPDP were performed in three different breast cell lines, highlighting the mechanism of cell death. The Dox-encapsulated ABN-SPDP showed toxicity in both the breast cancer cells (MCF-7 and MDA-MB-231), but, remarkably, a negligible effect was observed in non-tumoral MCF-10A cells. In addition to the hydrophilic Dox, this system could be used as a carrier for hydrophobic drugs like SN38. The system could be employed for the preparation of nanoparticles based on human serum albumin (HSA), which further enhances the feasibility of this system for clinical use. Hence, the albumin nanoparticles developed herein present an excellent potential for delivering various drugs in cancer therapy.

3.
Chem Commun (Camb) ; 54(63): 8729-8732, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30027197

ABSTRACT

An imine-based covalent organic framework (COF) decorated in its cavities with uracil groups has shown selective recognition towards adenine in water. These results show how the confinement of the base-pair inside the COF's pores allows a remarkable selective recognition in aqueous media.

SELECTION OF CITATIONS
SEARCH DETAIL
...