Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(24): 6355-6362, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38857301

ABSTRACT

Strain engineering represents a pivotal approach to tailoring the optoelectronic properties of two-dimensional (2D) materials. However, typical bending experiments often encounter challenges, such as layer slippage and inefficient transfer of strain from the substrate to the 2D material, hindering the realization of their full potential. In our study, using molybdenum disulfide (MoS2) as a model 2D material, we have demonstrated that layers obtained through gold-assisted exfoliation on flexible polycarbonate substrates can achieve high-efficient strain transfer while also mitigating slippage effects, owing to the strong interfacial interaction established between MoS2 and gold. We employ differential reflectance and Raman spectroscopy for monitoring strain changes. We successfully applied uniaxial strains of up to 3% to trilayer MoS2, resulting in a notable energy shift of 168 meV. These values are comparable only to those obtained in encapsulated samples with organic polymers.

2.
Dalton Trans ; 53(22): 9257-9261, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775103

ABSTRACT

This work presents a straightforward, room-temperature synthesis of a robust {[Fe(atrz)3](OTs)2}n monolith. This approach offers a green alternative to traditional nanoparticle synthesis for manipulating spin crossover (SCO) behaviour. The monolith exhibits a more gradual SCO transition at lower temperatures compared to the bulk material, aligning with observations in smaller particle systems. Notably, the synthesis employs a solvent- and surfactant-free approach, simplifying the process and potentially reducing environmental impact, aligning with the principles of green chemistry.

3.
ACS Appl Energy Mater ; 7(6): 2101-2108, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38550299

ABSTRACT

One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.

4.
ACS Appl Mater Interfaces ; 15(39): 46171-46180, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738025

ABSTRACT

The modification of the surface properties of graphene with polymers provides a method for expanding its scope into new applications as a hybrid material. Unfortunately, the chemical inertness of graphene hinders the covalent functionalization required to build them up. Developing new strategies to enhance the graphene chemical activity for efficient and stable functionalization, while preserving its electronic properties, is a major challenge. We here devise a covalent functionalization method that is clean, reproducible, scalable, and technologically relevant for the synthesis of a large-scale, substrate-supported graphene-polymer hybrid material. In a first step, hydrogen-assisted plasma activation of p-aminophenol (p-AP) linker molecules produces their stable and covalent attachment to large-area graphene. Second, an in situ radical polymerization reaction of 2-hydroxyethyl acrylate (HEA) is carried out on the functionalized surface, leading to a graphene-polymer hybrid functional material. The functionalization with a hydrophilic and soft polymer modifies the hydrophobicity of graphene and might enhance its biocompatibility. We have characterized these hybrid materials by atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopy and studied their electrical response, confirming that the graphene/p-AP/PHEA architecture is anchored covalently by the sp3 hybridization and controlled polymerization reaction on graphene, retaining its suitable electronic properties. Among all the possibilities, we assess the proof of concept of this graphene-based hybrid platform as a humidity sensor. An enhanced sensitivity is obtained in comparison with pristine graphene and related materials. This functional nanoarchitecture and the two-step strategy open up future potential applications in sensors, biomaterials, or biotechnology fields.

5.
Adv Mater ; 35(33): e2211176, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37046341

ABSTRACT

Generation, manipulation, and sensing of magnetic domain walls are cornerstones in the design of efficient spintronic devices. Half-metals are amenable for this purpose as large low field magnetoresistance signals can be expected from spin accumulation at spin textures. Among half metals, La1- x Srx MnO3 (LSMO) manganites are considered as promising candidates for their robust half-metallic ground state, Curie temperature above room temperature (Tc = 360 K, for x = 1/3), and chemical stability. Yet domain wall magnetoresistance is poorly understood, with large discrepancies in the reported values and conflicting interpretation of experimental data due to the entanglement of various source of magnetoresistance, namely, spin accumulation, anisotropic magnetoresistance, and colossal magnetoresistance. In this work, the domain wall magnetoresistance is measured in LSMO cross-shape nanowires with single-domain walls nucleated across the current path. Magnetoresistance values above 10% are found to be originating at the spin accumulation caused by the mistracking effect of the spin texture of the domain wall by the conduction electrons. Fundamentally, this result shows the importance on non-adiabatic processes at spin textures despite the strong Hund coupling to the localized t2g electrons of the manganite. These large magnetoresistance values are high enough for encoding and reading magnetic bits in future oxide spintronic sensors.

6.
ACS Nano ; 17(3): 3007-3018, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36651757

ABSTRACT

Magnetism and the existence of magnetic order in a material is determined by its dimensionality. In this regard, the recent emergence of magnetic layered van der Waals (vdW) materials provides a wide playground to explore the exotic magnetism arising in the two-dimensional (2D) limit. The magnetism of 2D flakes, especially antiferromagnetic ones, however, cannot be easily probed by conventional magnetometry techniques, being often replaced by indirect methods like Raman spectroscopy. Here, we make use of an alternative approach to provide direct magnetic evidence of few-layer vdW materials, including antiferromagnets. We take advantage of a surfactant-free, liquid-phase exfoliation (LPE) method to obtain thousands of few-layer FePS3 flakes that can be quenched in a solvent and measured in a conventional SQUID magnetometer. We show a direct magnetic evidence of the antiferromagnetic transition in FePS3 few-layer flakes, concomitant with a clear reduction of the Néel temperature with the flake thickness, in contrast with previous Raman reports. The quality of the LPE FePS3 flakes allows the study of electron transport down to cryogenic temperatures. The significant through-flake conductance is sensitive to the antiferromagnetic order transition. Besides, an additional rich spectra of electron transport excitations, including secondary magnetic transitions and potentially magnon-phonon hybrid states, appear at low temperatures. Finally, we show that the LPE is additionally a good starting point for the mass covalent functionalization of 2D magnetic materials with functional molecules. This technique is extensible to any vdW magnetic family.

7.
Biosens Bioelectron ; 222: 115006, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36538869

ABSTRACT

Biosensors based on graphene field-effect transistors have become a promising tool for detecting a broad range of analytes. However, their performance is substantially affected by the functionalization protocol. In this work, we use a controlled in-vacuum physical method for the covalent functionalization of graphene to construct ultrasensitive aptamer-based biosensors (aptasensors) able to detect hepatitis C virus core protein. These devices are highly specific and robust, achieving attomolar detection of the viral protein in human blood plasma. Such an improved sensitivity is rationalized by theoretical calculations showing that induced polarization at the graphene interface, caused by the proximity of covalently bound molecular probe, modulates the charge balance at the graphene/aptamer interface. This charge balance causes a net shift of the Dirac cone providing enhanced sensitivity for the attomolar detection of the target proteins. Such an unexpected effect paves the way for using this kind of graphene-based functionalized platforms for ultrasensitive and real-time diagnostics of different diseases.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Hepatitis C , Humans , Viral Core Proteins , Hepatitis C/diagnosis
8.
Nano Lett ; 22(18): 7457-7466, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36108061

ABSTRACT

We demonstrate the fabrication of field-effect transistors based on single-layer MoS2 and a thin layer of BaTiO3 (BTO) dielectric, isolated from its parent epitaxial template substrate. Thin BTO provides an ultrahigh-κ gate dielectric effectively screening Coulomb scattering centers. These devices show mobilities substantially larger than those obtained with standard SiO2 dielectrics and comparable with values obtained with hexagonal boron nitride, a dielectric employed for fabrication of high-performance two-dimensional (2D) based devices. Moreover, the ferroelectric character of BTO induces a robust hysteresis of the current vs gate voltage characteristics, attributed to its polarization switching. This hysteresis is strongly suppressed when the device is warmed up above the tetragonal-to-cubic transition temperature of BTO that leads to a ferroelectric-to-paraelectric transition. This hysteretic behavior is attractive for applications in memory storage devices. Our results open the door to the integration of a large family of complex oxides exhibiting strongly correlated physics in 2D-based devices.

9.
Adv Sci (Weinh) ; 9(24): e2202253, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35712765

ABSTRACT

The increasing environmental protection demand has prompted the development of passive thermal regulation systems that reduce temperature fluctuations in buildings. Here, it is demonstrated that the heat generated by the sun can trigger a spin crossover (SCO) in a molecule-base material, resulting in a concomitant color variation (from pink to white) and a phase transition. This leads to a cooling effect with respect to other thermochromic materials. In addition, when the material is cooled, a dampening of the temperature decrease is produced. Therefore, these materials can potentially be implemented for passive temperature control in buildings. Furthermore, SCO materials are remarkably stable upon cycling and highly versatile, which allows for the design of compounds with properties tailored for the desired climatic conditions and comfortable temperature.

10.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35564185

ABSTRACT

When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.

11.
Nanomaterials (Basel) ; 12(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269292

ABSTRACT

In this work, we demonstrate the use of electrical impedance spectroscopy (EIS) for the disentanglement of several dielectric contributions in encapsulated single graphene layers. The dielectric data strongly vary qualitatively with the nominal graphene resistance. In the case of sufficiently low resistance of the graphene layers, the dielectric spectra are dominated by inductive contributions, which allow for disentanglement of the electrode/graphene interface resistance from the intrinsic graphene resistance by the application of an adequate equivalent circuit model. Higher resistance of the graphene layers leads to predominantly capacitive dielectric contributions, and the deconvolution is not feasible due to the experimental high frequency limit of the EIS technique.

12.
Nat Commun ; 12(1): 4668, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344878

ABSTRACT

Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length. We study vortices in 2H-NbSe2 and in 2H-NbSe1.8S0.2 with magnetic impurities, characterizing these with detailed Hubbard-corrected density functional calculations. We find that the induced electron-hole imbalance depends on the band character of the superconducting material. Our results show that coupling between quantum bound states in superconductors is remarkably robust and has a strong influence in tunneling measurements.

13.
ACS Appl Mater Interfaces ; 13(35): 42205-42211, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34432411

ABSTRACT

The interest in the research of the structural and electronic properties between graphene and lithium has bloomed since it has been proven that the use of graphene as an anode material in lithium-ion batteries ameliorates their performance and stability. Here, we investigate an alternative route to intercalate lithium underneath epitaxially grown graphene on iridium by means of photon irradiation. We grow thin films of LiCl on top of graphene on Ir(111) and irradiate the system with soft X-ray photons, which leads to a cascade of physicochemical reactions. Upon LiCl photodissociation, we find fast chlorine desorption and a complex sequence of lithium intercalation processes. First, it intercalates, forming a disordered structure between graphene and iridium. On increasing the irradiation time, an ordered Li(1 × 1) surface structure forms, which evolves upon extensive photon irradiation. For sufficiently long exposure times, lithium diffusion within the metal substrate is observed. Thermal annealing allows for efficient lithium desorption and full recovery of the pristine G/Ir(111) system. We follow in detail the photochemical processes using a multitechnique approach, which allows us to correlate the structural, chemical, and electronic properties for every step of the intercalation process of lithium underneath graphene.

14.
Mater Adv ; 2(10): 3274-3281, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-34124682

ABSTRACT

Paper has the potential to dramatically reduce the cost of electronic components. In fact, paper is 10 000 times cheaper than crystalline silicon, motivating the research to integrate electronic materials on paper substrates. Among the different electronic materials, van der Waals materials are attracting the interest of the scientific community working on paper-based electronics because of the combination of high electrical performance and mechanical flexibility. Up to now, different methods have been developed to pattern conducting, semiconducting and insulating van der Waals materials on paper but the integration of superconductors remains elusive. Here, the deposition of NbSe2, an illustrative van der Waals superconductor, on standard copy paper is demonstrated. The deposited NbSe2 films on paper display superconducting properties (e.g. observation of Meissner effect and resistance drop to zero-resistance state when cooled down below its critical temperature) similar to those of bulk NbSe2.

15.
Nat Commun ; 12(1): 1578, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33707459

ABSTRACT

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.

16.
J Phys Condens Matter ; 33(14)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33445159

ABSTRACT

The magnetoresistance (MR) of iron pnictide superconductors is often dominated by electron-electron correlations and deviates from theH2or saturating behaviors expected for uncorrelated metals. Contrary to similar Fe-based pnictide systems, the superconductor LaRu2P2(Tc= 4 K) shows no enhancement of electron-electron correlations. Here we report a non-saturating MR deviating from theH2or saturating behaviors in LaRu2P2. We present results in single crystals of LaRu2P2, where we observe a MR followingH1.3up to 22 T. We discuss our result by comparing the bandstructure of LaRu2P2with that of Fe based pnictide superconductors. The different orbital structures of Fe and Ru leads to a 3D Fermi surface with negligible bandwidth renormalization in LaRu2P2, that contains a large open sheet over the whole Brillouin zone. We show that the large MR in LaRu2P2is unrelated to the one obtained in materials with strong electron-electron correlations and that it is compatible instead with conduction due to open orbits on the rather complex Fermi surface structure of LaRu2P2.

17.
Phys Chem Chem Phys ; 22(20): 11625-11636, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32405632

ABSTRACT

Magnetoimpedance spectroscopy was carried out on phase-separated La0.5Ca0.5MnO3 polycrystalline manganites. The La0.5Ca0.5MnO3 powder was synthesized following an adapted sol-gel route. Structural and magnetic data showed the signs of phase coexistence of ferromagnetic (FM) Pnma and charge-ordered antiferromagnetic (CO-AFM) P21/m phases. Magnetization vs. temperature (M vs. T) measurements revealed several magnetic transitions from the high temperature paramagnetic (PM) to an FM phase upon cooling (PM-FM) at ≈240 K, FM-AFM (≈170 K) and AFM-FM (≈100 K). Magnetic field (H)-dependent impedance spectroscopy data were collected from sintered pellets and fitted with an equivalent circuit model to separately analyze the different dielectric contributions from the grain boundary (GB) and the grain interior bulk areas. This allowed separating the GB and bulk magnetoresistance (MR), which was shown to amount to a maximum of ≈80% for both GB and bulk at H = 10 T near the metal-insulator transition (MIT) at ≈100 K. The GB resistance was found to be larger than the bulk resistance by a factor of ≈3, which implies that the direct current (DC) resistance and DC MR are dominated by contributions from the GBs. The magnetocapacitance (MC) effects detected were all found to be small below ≈3%, including in the presence of a CO phase.

18.
Dalton Trans ; 49(22): 7315-7318, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32469360

ABSTRACT

A covalent post-synthetic modification is applied in one of the most relevant polymers to obtain unprecedented switchable spin crossover (SCO) materials. We also demonstrate that this material can be used as a selective chemo-sensor for VOCs (particularly, formaldehyde) thanks to solid/vapor reactions occurring between the polymer and the corresponding vapor.

19.
Materials (Basel) ; 13(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429266

ABSTRACT

We fabricated large-area atomically thin MoS2 layers through the direct transformation of crystalline molybdenum trioxide (MoO3) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-crystal domain size) with areas of up to 300 × 300 µm2, 2-4 layers in thickness and show a marked p-type behavior. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.

20.
Nano Lett ; 20(2): 1141-1147, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31928013

ABSTRACT

Franckeite is a naturally occurring layered mineral with a structure composed of alternating stacks of SnS2-like and PbS-like layers. Although this superlattice is composed of a sequence of isotropic two-dimensional layers, it exhibits a spontaneous rippling that makes the material structurally anisotropic. We demonstrate that this rippling comes hand in hand with an inhomogeneous in-plane strain profile and anisotropic electrical, vibrational, and optical properties. We argue that this symmetry breakdown results from a spatial modulation of the van der Waals interaction between layers due to the SnS2-like and PbS-like lattices incommensurability.

SELECTION OF CITATIONS
SEARCH DETAIL
...